Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sums of squares and moment problems in equivariant situations


Authors: Jaka Cimpric, Salma Kuhlmann and Claus Scheiderer
Journal: Trans. Amer. Math. Soc. 361 (2009), 735-765
MSC (2000): Primary 14P10, 14L30, 20G20
DOI: https://doi.org/10.1090/S0002-9947-08-04588-1
Published electronically: September 23, 2008
MathSciNet review: 2452823
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We begin a systematic study of positivity and moment problems in an equivariant setting. Given a reductive group $ G$ over $ \mathbb{R}$ acting on an affine $ \mathbb{R}$-variety $ V$, we consider the induced dual action on the coordinate ring $ \mathbb{R}[V]$ and on the linear dual space of $ \mathbb{R}[V]$. In this setting, given an invariant closed semialgebraic subset $ K$ of $ V(\mathbb{R})$, we study the problem of representation of invariant nonnegative polynomials on $ K$ by invariant sums of squares, and the closely related problem of representation of invariant linear functionals on $ \mathbb{R}[V]$ by invariant measures supported on $ K$. To this end, we analyse the relation between quadratic modules of $ \mathbb{R}[V]$ and associated quadratic modules of the (finitely generated) subring $ \mathbb{R}[V]^G$ of invariant polynomials. We apply our results to investigate the finite solvability of an equivariant version of the multidimensional $ K$-moment problem. Most of our results are specific to the case where the group $ G(\mathbb{R})$ is compact.


References [Enhancements On Off] (What's this?)

  • [Ba] H. Bauer: Maß- und Integrationstheorie. 2. Aufl. De Gruyter, Berlin, 1992. MR 1181881 (93g:28001)
  • [Bi] D. Birkes: Orbits of linear algebraic groups. Ann. Math. (2) 93, 459-475 (1971). MR 0296077 (45:5138)
  • [BCR] J. Bochnak, M. Coste, M.-F. Roy: Real Algebraic Geometry. Erg. Math. Grenzgeb. (3) 36, Springer, Berlin, 1998. MR 1659509 (2000a:14067)
  • [Bo] A. Borel: Linear Algebraic Groups. Second enlarged edition. Grad. Texts Math. 126, Springer, New York, 1991. MR 1102012 (92d:20001)
  • [Br] L. Bröcker: On symmetric semialgebraic sets and orbit spaces. In: Singularities Symposium -- Łojasiewicz 70 (Kraków, 1996). Banach Center Publ. 44, Polish Acad. Sci., Warszawa, 1998, pp. 37-50. MR 1677398 (2000b:14076)
  • [CKM] J. Cimprič, S. Kuhlmann, M. Marshall: Positivity in power series rings (2008), to appear in: Advances in Geometry.
  • [DK] H. Derksen, G. Kemper: Computational Invariant Theory. Encycl. Math. Sciences, Springer, Berlin, 2002. MR 1918599 (2003g:13004)
  • [Ga] F. R. Gantmacher: Matrix Theory. Chelsea Publishing, New York, 1960. MR 0107649 (21:6372c)
  • [GP] K. Gatermann, P. A. Parrilo: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192, 95-128 (2004). MR 2067190 (2005d:68155)
  • [HP] J. W. Helton, M. Putinar: Positive polynomials in scalar and matrix variables, the spectral theorem and optimization. In: Vol. Operator Theory, Structured matrices and dilations, Theta, Bucharest, June 2007, pp. 229-306. MR 2389626
  • [KS] M. Knebusch, C. Scheiderer: Einführung in die reelle Algebra. Vieweg, Braunschweig/ Wiesbaden, 1989. MR 1029278 (90m:12005)
  • [KH] B. Kostant, G. Hochschild: Differential forms and Lie algebra cohomology for algebraic linear groups. Illinois J. Math. 6, 264-281 (1962). MR 0139695 (25:3126)
  • [Kr] H. Kraft: Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics, Vieweg, Braunschweig/Wiesbaden, 1984. MR 768181 (86j:14006)
  • [KM] S. Kuhlmann, M. Marshall: Positivity, sums of squares and the multi-dimensional moment problem. Trans. Am. Math. Soc. 354, 4285-4301 (2002). MR 1926876 (2003j:14078)
  • [KMS] S. Kuhlmann, M. Marshall, N. Schwartz: Positivity, sums of squares and the multi-dimensional moment problem II. Adv. Geom. 5, 583-607 (2005). MR 2174483 (2006i:14064)
  • [Lu] D. Luna: Sur certains opérations différentiables des groupes de Lie. Am. J. Math. 97, 172-181 (1975). MR 0364272 (51:527)
  • [PSch] V. Powers, C. Scheiderer: The moment problem for non-compact semialgebraic sets. Adv. Geom. 1, 71-88 (2001). MR 1823953 (2002c:14086)
  • [PW] V. Powers, Th. Wörmann: An algorithm for sums of squares of real polynomials. J. Pure Appl. Algebra 127, 99-104 (1998). MR 1609496 (99a:11047)
  • [PD] A. Prestel, Ch. N. Delzell: Positive Polynomials. Monographs in Mathematics, Springer, Berlin, 2001. MR 1829790 (2002k:13044)
  • [PS] C. Procesi, G. Schwarz: Inequalities defining orbit spaces. Invent. Math. 81, 539-554 (1985). MR 807071 (87h:20078)
  • [Sch1] C. Scheiderer: Sums of squares on real algebraic curves. Math. Z. 245, 725-760 (2003). MR 2020709 (2004k:14103)
  • [Sch2] C. Scheiderer: Positivity and sums of squares: A guide to some recent results. Preprint 2003, available at www.ihp-raag.org/publications.
  • [Sch3] C. Scheiderer: Non-existence of degree bounds for weighted sums of squares representations. J. Complexity 21, 823-844 (2005). MR 2182447 (2006k:14117)
  • [Sch4] C. Scheiderer: Sums of squares on real algebraic surfaces. Manuscr. Math. 119, 395-410 (2006). MR 2223624 (2006m:14079)
  • [Sch5] C. Scheiderer: Local study of two-dimensional preorderings. In progress.
  • [Sm] K. Schmüdgen: On the moment problem of closed semi-algebraic sets. J. Reine Angew. Math. 558, 225-234 (2003). MR 1979186 (2004e:47019)
  • [St] B. Sturmfels: Algorithms in Invariant Theory. Springer-Verlag, Vienna, 1993. MR 1255980 (94m:13004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14P10, 14L30, 20G20

Retrieve articles in all journals with MSC (2000): 14P10, 14L30, 20G20


Additional Information

Jaka Cimpric
Affiliation: Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenija
Email: cimpric@fmf.uni-lj.si

Salma Kuhlmann
Affiliation: Department of Mathematics and Statistics, University of Saskatchewan, Room 142 McLean Hall, 106 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E6
Email: skuhlman@snoopy.usask.ca

Claus Scheiderer
Affiliation: Fachbereich Mathematik und Statistik, Universität Konstanz, D-78457 Konstanz, Germany
Email: claus.scheiderer@uni-konstanz.de

DOI: https://doi.org/10.1090/S0002-9947-08-04588-1
Keywords: Semi-algebraic sets, group actions, moment problems
Received by editor(s): November 19, 2006
Published electronically: September 23, 2008
Additional Notes: The third author was partially supported by the European RTNetwork RAAG, HPRN-CT-2001-00271
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society