Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Spectral cluster estimates for metrics of Sobolev regularity


Author: Matthew D. Blair
Journal: Trans. Amer. Math. Soc. 361 (2009), 1209-1240
MSC (2000): Primary 42C15; Secondary 35P99, 35L15, 35R05
DOI: https://doi.org/10.1090/S0002-9947-08-04638-2
Published electronically: October 23, 2008
MathSciNet review: 2457396
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate spectral cluster estimates for compact manifolds equipped with a Riemannian metric whose regularity is determined by its inclusion in a Sobolev space of sufficiently high order. The problem is reduced to obtaining $ L^p$ estimates for the wave equation which are shown by employing wave packet techniques.


References [Enhancements On Off] (What's this?)

  • 1. Bahouri, H.; Chemin, J.-Y. Equations d'ondes quasilineares et effet dispersif. Int. Math. Res. Not. 1999, 21, 1141-1178. MR 1728676 (2000i:35125)
  • 2. Bahouri, H.; Chemin, J.-Y. Equations d'ondes quasilineares et estimations de Strichartz. Amer. J. Math. 1999, 121 (6), 1337-1377. MR 1719798 (2000i:35124)
  • 3. Blair, M. Strichartz estimates for wave equations with coefficients of Sobolev regularity. Comm. Partial Differential Equations 2006, 31 (5), 649-688. MR 2233036
  • 4. Cordoba, A.; Fefferman. C. Wave packets and Fourier integral operators. Comm. Partial Differential Equations 1978, 3 (11), 979-1005. MR 507783 (80a:35117)
  • 5. Koch, H.; Smith, H.; Tataru, D. Sharp $ L^q$ bounds on spectral clusters for Hölder metrics. Math. Res. Lett. 2007, 14 (1), 77-86. MR 2289621 (2008a:35048)
  • 6. Mockenhaupt, G.; Seeger, A.; Sogge, C. D. Local smoothing of Fourier integrals and Carleson-Sjölin estimates. J. Amer. Math. Soc. 1993, 6, 65-130. MR 1168960 (93h:58150)
  • 7. Saloff-Coste, L. Uniformly elliptic operators on Riemannian manifolds. J. Differential Geom. 1992, 36, 417-450. MR 1180389 (93m:58122)
  • 8. Smith, H. A parametrix construction for wave equations with $ C^{1,1}$ coefficients. Ann. Inst. Fourier (Grenoble) 1998, 48 (3), 797-835. MR 1644105 (99h:35119)
  • 9. Smith, H. Sharp $ L^2 \to L^q$ bounds on spectral projectors for low regularity metrics. Math. Res. Lett. 2006, 13 (6), 967-974. MR 2280790
  • 10. Smith, H. Spectral cluster estimates for $ C^{1,1}$ metrics. Amer. J. Math. 2006, 128 (5), 1069-1103. MR 2262171
  • 11. Smith, H.; Sogge, C. On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett. 1994, 1 (6), 729-737. MR 1306017 (95h:35156)
  • 12. Smith, H.; Tataru, D. Sharp counterexamples for Strichartz estimates for low regularity metrics. Math. Res. Lett. 2002, 9 (2-3), 199-204. MR 1909638 (2003e:35173)
  • 13. Sogge, C. D. Concerning the $ L^p$ norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal. 1988, 77 (1), 123-138. MR 930395 (89d:35131)
  • 14. Stein, E. M. Singular Integrals and Differentiability Properties of Functions; Princeton University Press: Princeton, N.J., 1970. MR 0290095 (44:7280)
  • 15. Tataru, D. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients and the nonlinear wave equation. Amer. J. Math 2000, 122 (2), 349-376. MR 1749052 (2001c:35260)
  • 16. Tataru, D. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients II. Amer. J. Math 2001, 123 (3), 385-423. MR 1833146 (2002d:35140)
  • 17. Tataru, D. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients III. J. Amer. Math. Soc. 2002, 15 (2), 419-442. MR 1887639 (2003a:35120)
  • 18. Taylor, M.E. Partial Differential Equations. III; Applied Mathematical Sciences 117, Springer-Verlag: New York, 1996. MR 1477408 (98k:35001)
  • 19. Taylor, M.E. Pseudodifferential Operators and Nonlinear PDE; Birkhhäuser: Boston, 1991. MR 1121019 (92j:35193)
  • 20. Taylor, M.E. Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials; Mathematical Surveys and Monographs, Vol. 81, American Mathematical Society: Providence, R.I., 2000. MR 1766415 (2001g:35004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 42C15, 35P99, 35L15, 35R05

Retrieve articles in all journals with MSC (2000): 42C15, 35P99, 35L15, 35R05


Additional Information

Matthew D. Blair
Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627
Address at time of publication: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
Email: blair@math.rochester.edu, blair@math.unm.edu

DOI: https://doi.org/10.1090/S0002-9947-08-04638-2
Received by editor(s): August 28, 2006
Published electronically: October 23, 2008
Additional Notes: The author was supported in part by the NSF grant DMS-0354668.
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society