Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Construction of global function fields from linear codes and vice versa


Authors: Chaoping Xing and Sze Ling Yeo
Journal: Trans. Amer. Math. Soc. 361 (2009), 1333-1349
MSC (2000): Primary 11G20, 14H05, 11R60
DOI: https://doi.org/10.1090/S0002-9947-08-04710-7
Published electronically: October 14, 2008
MathSciNet review: 2457401
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a new connection between linear codes and global function fields, which in turn allows us to construct new global function fields with improved lower bounds on the number of rational places. The genus and number of rational places of subfields of certain families of cyclotomic function fields are given as well.


References [Enhancements On Off] (What's this?)

  • 1. R. Auer, Ray class fields of global function fields with many rational places, Dissertation, University of Oldenburg, 1999.
  • 2. R. Auer, Curves over finite fields with many rational points obtained by ray class field extensions, Algorithmic Number Theory (W. Bosma, ed.), Lecture Notes in Computer Science, Vol. 1838, pp. 127-134, Springer, Berlin, 2000. MR 1850602 (2002h:11053)
  • 3. R. Auer, Ray class fields of global function fields with many rational places, Acta Arith. 95, 97-122 (2000). MR 1785410 (2002e:11162)
  • 4. A. E. Brouwer, Bounds on the Minimum Distance of Linear Codes, Website: http://www.win.tue.nl/$ ^\sim$aeb/voorlincod.html
  • 5. C.S. Ding, H. Niederreiter, and C.P. Xing, Some new codes from algebraic curves, IEEE Trans. Inform. Theory 46, 2638-2642 (2000). MR 1806824 (2001j:94048)
  • 6. N. D. Elkies, Excellent codes from modular curves, in STOC'01: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, Hersonissos, Crete, 200-208(2001). MR 2120316
  • 7. V.D. Goppa, Codes on algebraic curves (Russian), Dokl. Akad. Nauk SSSR 259, 1289-1290 (1981). MR 628795 (82k:94017)
  • 8. V.D. Goppa, Algebraic-geometric codes (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 46, 762-781 (1982). MR 670165 (84g:94011)
  • 9. V.D. Goppa, Geometry and Codes, Kluwer, Dordrecht, 1988. MR 1029027 (91a:14013)
  • 10. D.R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189, 77-91 (1974). MR 0330106 (48:8444)
  • 11. D.R. Hayes, Explicit class field theory in global function fields, Studies in Algebra and Number Theory, Advances in Math. Supp. Studies, Vol. 6, pp. 173-217, Academic Press, New York, 1979. MR 535766 (81d:12011)
  • 12. D.R. Hayes, A brief introduction to Drinfeld modules, The Arithmetic of Function Fields (D. Goss, D.R. Hayes, and M.I. Rosen, eds.), pp. 1-32, W. de Gruyter, Berlin, 1992. MR 1196509 (93m:11050)
  • 13. K. Lauter, A formula for constructing curves over finite fields with many rational points, J. Number Theory 74, 56-72 (1999). MR 1670536 (99k:11088)
  • 14. S. Ling and C.P. Xing, Coding Theory. A First Course, Cambridge, 2004. MR 2048591 (2005c:94001)
  • 15. H. Niederreiter and C.P. Xing, Rational points on curves over finite fields: Theory and Applications, London Mathematical Society Lecture Note Series 285, Cambridge, 2001.MR 1837382 (2002h:11055)
  • 16. H. Niederreiter, C.P. Xing, and K.Y. Lam, A new construction of algebraic-geometry codes, Applicable Algebra Engrg. Comm. Comput. 9, 373-381 (1999). MR 1697176 (2000j:94044)
  • 17. F. Özbudak and H. Stichtenoth, Constructing codes from algebraic curves, IEEE Trans. Inform. Theory 45, 2502-2505 (1999). MR 1725138
  • 18. J.-P. Serre, ``Local Fields,'' Springer, New York, 1979. MR 554237 (82e:12016)
  • 19. J.-P. Serre, ``Rational points on curves over finite fields,'' Lecture Notes, Harvard University, 1985.
  • 20. H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993. MR 1251961 (94k:14016)
  • 21. M.A. Tsfasman and S.G. Vladut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991. MR 1186841 (93i:94023)
  • 22. G. van der Geer and M. van der Vlugt, Tables of curves with many points, 17 November, 2007, Website: http://www.science.uva.nl/$ ^\sim$geer.
  • 23. C.P. Xing, Linear codes from narrow ray class groups of algebraic curves, IEEE Trans. on Information Theory, 50, 541-543(2004). MR 2045029 (2005a:94108)
  • 24. C.P. Xing, H. Niederreiter, and K.Y. Lam, Constructions of algebraic-geometry codes, IEEE Trans. Inform. Theory 45, 1186-1193 (1999). MR 1686251 (2000g:94056)
  • 25. C.P. Xing, H. Niederreiter, and K.Y. Lam, A generalization of algebraic-geometry codes, IEEE Trans. Inform. Theory 45, 2498-2501 (1999). MR 1725137
  • 26. C.P. Xing and S. Ling, A class of linear codes with good parameters, IEEE Trans. Inform. Theory 46, 2184-2188 (2000). MR 1781376 (2001e:94018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11G20, 14H05, 11R60

Retrieve articles in all journals with MSC (2000): 11G20, 14H05, 11R60


Additional Information

Chaoping Xing
Affiliation: School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616, Republic of Singapore.
Email: xingcp@ntu.edu.sg

Sze Ling Yeo
Affiliation: Systems & Security Department (SSD), Institute for Infocomm Research (I2R), Singapore 119613, Republic of Singapore.
Email: slyeo@i2r.a-star.edu.sg

DOI: https://doi.org/10.1090/S0002-9947-08-04710-7
Received by editor(s): September 1, 2005
Received by editor(s) in revised form: January 4, 2007
Published electronically: October 14, 2008
Additional Notes: The first author is the corresponding author.
The first author was partially supported by the National Scientific Research Project 973 of China 2004CB318000.
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society