Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The Sato-Tate conjecture on average for small angles

Authors: Stephan Baier and Liangyi Zhao
Journal: Trans. Amer. Math. Soc. 361 (2009), 1811-1832
MSC (2000): Primary 11G05
Published electronically: October 31, 2008
MathSciNet review: 2465818
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain average results on the Sato-Tate conjecture for elliptic curves for small angles.

References [Enhancements On Off] (What's this?)

  • [1] Stephan Baier, The Lang-Trotter conjecture on average, J. Ramanujan Math. Soc. 22 (2007), no. 4, 299–314. MR 2376806
  • [2] W. D. Banks, I. E. Shparlinski, Sato-Tate, cyclicity, and divisibility statistics on average for elliptic curves of small height, Israel J. Math. (to appear), preprint available at ArXiv:math.NT/0609144.
  • [3] L. Clozel, M. Harris, and R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations, preprint, available at$ \sim$rtaylor.
  • [4] Chantal David and Francesco Pappalardi, Average Frobenius distributions of elliptic curves, Internat. Math. Res. Notices 4 (1999), 165–183. MR 1677267, 10.1155/S1073792899000082
  • [5] Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
  • [6] Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272 (German). MR 0005125
  • [7] J. B. Friedlander and H. Iwaniec, The divisor problem for arithmetic progressions, Acta Arith. 45 (1985), no. 3, 273–277. MR 808026
  • [8] Etienne Fouvry and M. Ram Murty, On the distribution of supersingular primes, Canad. J. Math. 48 (1996), no. 1, 81–104. MR 1382477, 10.4153/CJM-1996-004-7
  • [9] M. Harris, N. Shepherd-Barron and R. Taylor, Ihara's lemma and potential automorphy, preprint, available at$ \sim$rtaylor.
  • [10] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 1 (1918), no. 4, 357–376 (German). MR 1544302, 10.1007/BF01465095
  • [11] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 6 (1920), no. 1-2, 11–51 (German). MR 1544392, 10.1007/BF01202991
  • [12] Aleksandar Ivić, The Riemann zeta-function, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. The theory of the Riemann zeta-function with applications. MR 792089
  • [13] Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214
  • [14] Kevin James and Gang Yu, Average Frobenius distribution of elliptic curves, Acta Arith. 124 (2006), no. 1, 79–100. MR 2262142, 10.4064/aa124-1-7
  • [15] Serge Lang and Hale Trotter, Frobenius distributions in 𝐺𝐿₂-extensions, Lecture Notes in Mathematics, Vol. 504, Springer-Verlag, Berlin-New York, 1976. Distribution of Frobenius automorphisms in 𝐺𝐿₂-extensions of the rational numbers. MR 0568299
  • [16] R. P. Langlands, Problems in the theory of automorphic forms, Lectures in modern analysis and applications, III, Springer, Berlin, 1970, pp. 18–61. Lecture Notes in Math., Vol. 170. MR 0302614
  • [17] V. Kumar Murty, On the Sato-Tate conjecture, Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981), Progr. Math., vol. 26, Birkhäuser, Boston, Mass., 1982, pp. 195–205. MR 685296
  • [18] M. Ram Murty, Recent developments in the Langlands program, C. R. Math. Acad. Sci. Soc. R. Can. 24 (2002), no. 2, 33–54 (English, with French summary). MR 1902021
  • [19] Freydoon Shahidi, Symmetric power 𝐿-functions for 𝐺𝐿(2), Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., Providence, RI, 1994, pp. 159–182. MR 1260961
  • [20] John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 93–110. MR 0225778
  • [21] R. Taylor, Automorphy for some $ l$-adic lifts of automorphic mod $ l$ representations II, preprint, available at$ \sim$rtaylor.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11G05

Retrieve articles in all journals with MSC (2000): 11G05

Additional Information

Stephan Baier
Affiliation: Department of Mathematics and Statistics, Queen’s University, University Ave., Kingston, Ontario, Canada K7L 3N6
Address at time of publication: School of Engineering and Sciences, Jacobs University, P.O. Box 750 561, Bremen 28725 Germany

Liangyi Zhao
Affiliation: Department of Mathematics, University of Toronto, 40 Saint George Street, Toronto, Ontario, Canada M5S 2E4
Address at time of publication: Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

Keywords: Sato-Tate conjecture, average Frobenius distribution
Received by editor(s): August 15, 2006
Received by editor(s) in revised form: February 12, 2007
Published electronically: October 31, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.