Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Deformations of singularities and variation of GIT quotients


Author: Radu Laza
Journal: Trans. Amer. Math. Soc. 361 (2009), 2109-2161
MSC (2000): Primary 14J17, 14B07, 32S25; Secondary 14L24
DOI: https://doi.org/10.1090/S0002-9947-08-04660-6
Published electronically: November 12, 2008
MathSciNet review: 2465831
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the deformations of the minimally elliptic surface singularity $ N_{16}$. A standard argument reduces the study of the deformations of $ N_{16}$ to the study of the moduli space of pairs $ (C,L)$ consisting of a plane quintic curve and a line. We construct this moduli space in two ways: via the periods of $ K3$ surfaces and by using geometric invariant theory (GIT). The GIT construction depends on the choice of the linearization. In particular, for one choice of linearization we recover the space constructed via $ K3$ surfaces and for another we obtain the full deformation space of $ N_{16}$. The two spaces are related by a series of explicit flips. In conclusion, by using the flexibility given by GIT and the standard tools of Hodge theory, we obtain a good understanding of the deformations of $ N_{16}$.


References [Enhancements On Off] (What's this?)

  • 1. V. I. Arnol$ '$d, V. V. Goryunov, O. V. Lyashko, and V. A. Vasil$ '$ev, Singularity theory. I, Springer-Verlag, Berlin, 1998. MR 1660090 (99f:58024)
  • 2. V. I. Arnol$ '$d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. I, Monographs in Mathematics, vol. 82, Birkhäuser, Boston, MA, 1985. MR 0777682 (86f:58018)
  • 3. -, Singularities of differentiable maps. Vol. II, Monographs in Mathematics, vol. 83, Birkhäuser Boston Inc., Boston, MA, 1988. MR 0966191 (89g:58024)
  • 4. W. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact complex surfaces, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 4, Springer-Verlag, Berlin, 2004. MR 2030225 (2004m:14070)
  • 5. E. Brieskorn, The unfolding of exceptional singularities, Nova Acta Leopoldina (N.F.) 52 (1981), no. 240, 65-93, Leopoldina Symposium: Singularities (Thüringen, 1978). MR 642697 (83k:32020)
  • 6. -, Die Milnorgitter der exzeptionellen unimodularen Singularitäten, Bonner Mathematische Schriften, 150, Universität Bonn Mathematisches Institut, Bonn, 1983. MR 733785 (85k:32014)
  • 7. I. V. Dolgachev, Mirror symmetry for lattice polarized $ K3$ surfaces, J. Math. Sci. 81 (1996), no. 3, 2599-2630. MR 1420220 (97i:14024)
  • 8. I. V. Dolgachev and Y. Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. (1998), no. 87, 5-56. MR 1659282 (2000b:14060)
  • 9. W. Ebeling, An arithmetic characterisation of the symmetric monodromy groups of singularities, Invent. Math. 77 (1984), no. 1, 85-99. MR 751132 (87b:14001)
  • 10. R. Friedman, A new proof of the global Torelli theorem for $ K3$ surfaces, Ann. of Math. (2) 120 (1984), no. 2, 237-269. MR 763907 (86k:14028)
  • 11. -, Algebraic surfaces and holomorphic vector bundles, Universitext, Springer-Verlag, New York, 1998. MR 1600388 (99c:14056)
  • 12. P. Hacking, Compact moduli of plane curves, Duke Math. J. 124 (2004), no. 2, 213-257. MR 2078368 (2005f:14056)
  • 13. J. Harris, Galois groups of enumerative problems, Duke Math. J. 46 (1979), no. 4, 685-724. MR 552521 (80m:14038)
  • 14. H. Kim and Y. Lee, Log canonical thresholds of semistable plane curves, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 2, 273-280. MR 2090618 (2005m:14055)
  • 15. J. Kollár, Singularities of pairs, Algebraic geometry--Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221-287. MR 1492525 (99m:14033)
  • 16. J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. MR 1658959 (2000b:14018)
  • 17. J. Kollár, K. E. Smith, and A. Corti, Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, vol. 92, Cambridge University Press, Cambridge, 2004. MR 2062787 (2005i:14063)
  • 18. E. Looijenga, On the semi-universal deformation of a simple-elliptic hypersurface singularity. II. The discriminant, Topology 17 (1978), no. 1, 23-40. MR 0492380 (58:11503)
  • 19. -, The smoothing components of a triangle singularity. II, Math. Ann. 269 (1984), no. 3, 357-387. MR 761312 (86d:14033)
  • 20. -, Compactifications defined by arrangements. II. Locally symmetric varieties of type IV, Duke Math. J. 119 (2003), no. 3, 527-588. MR 2003125 (2004i:14042b)
  • 21. D. Luna, Adhérences d'orbite et invariants, Invent. Math. 29 (1975), no. 3, 231-238. MR 0376704 (51:12879)
  • 22. D. R. Morrison, The Clemens-Schmid exact sequence and applications, Topics in transcendental algebraic geometry, Ann. of Math. Stud., vol. 106, Princeton Univ. Press, 1984, pp. 101-119. MR 756848
  • 23. -, The geometry of $ K3$ surfaces, preprint (1988), 1-72.
  • 24. S. Mukai, An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, vol. 81, Cambridge University Press, Cambridge, 2003. MR 2004218 (2004g:14002)
  • 25. D. Mumford, Stability of projective varieties, Enseignement Math. (2) 23 (1977), no. 1-2, 39-110. MR 0450272 (56:8568)
  • 26. D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906 (95m:14012)
  • 27. V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izvestiya 43 (1980), no. 1, 103-167. MR 525944 (80j:10031)
  • 28. H. C. Pinkham, Deformations of algebraic varieties with $ G\sb{m}$ action, Société Mathématique de France, Paris, 1974, Astérisque, No. 20. MR 0376672 (51:12847)
  • 29. -, Groupe de monodromie des singularités unimodulaires exceptionnelles, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 23, A1515-A1518. MR 0439840 (55:12722)
  • 30. -, Simple elliptic singularities, Del Pezzo surfaces and Cremona transformations, Proc. Sympos. Pure Math., Vol. XXX, Part 1, Amer. Math. Soc., Providence, R. I., 1977, pp. 69-71. MR 0441969 (56:358)
  • 31. -, Singularités exceptionnelles, la dualité étrange d'Arnold et les surfaces $ K-3$, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 11, A615-A618. MR 0429876 (55:2886)
  • 32. -, Deformations of normal surface singularities with $ C\sp*$ action, Math. Ann. 232 (1978), no. 1, 65-84. MR 0498543 (58:16648)
  • 33. F. Scattone, On the compactification of moduli spaces for algebraic $ K3$ surfaces, Mem. Amer. Math. Soc. 70 (1987), no. 374, x+86. MR 912636 (88m:14030)
  • 34. J. Shah, Insignificant limit singularities of surfaces and their mixed Hodge structure, Ann. of Math. (2) 109 (1979), no. 3, 497-536. MR 534760 (81e:14021)
  • 35. -, A complete moduli space for $ K3$ surfaces of degree $ 2$, Ann. of Math. (2) 112 (1980), no. 3, 485-510. MR 595204 (82j:14030)
  • 36. H. Sterk, Compactifications of the period space of Enriques surfaces. I, Math. Z. 207 (1991), no. 1, 1-36. MR 1106810 (92e:14030)
  • 37. M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), no. 3, 691-723. MR 1333296 (96m:14017)
  • 38. T. Urabe, Dynkin graphs, Gabrièlov graphs and triangle singularities, Singularity theory (Liverpool, 1996), London Math. Soc. Lecture Note Ser., vol. 263, Cambridge Univ. Press, Cambridge, 1999, pp. xvii-xviii, 163-174. MR 1709351 (2000f:32041)
  • 39. È. B. Vinberg, Some arithmetical discrete groups in Lobačevskiĭspaces, Discrete subgroups of Lie groups and applications to moduli, Oxford Univ. Press, Bombay, 1975, pp. 323-348. MR 0422505 (54:10492)
  • 40. C. T. C. Wall, Highly singular quintic curves, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 2, 257-277. MR 1357043 (97b:14058)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14J17, 14B07, 32S25, 14L24

Retrieve articles in all journals with MSC (2000): 14J17, 14B07, 32S25, 14L24


Additional Information

Radu Laza
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Email: rlaza@umich.edu

DOI: https://doi.org/10.1090/S0002-9947-08-04660-6
Received by editor(s): August 28, 2006
Received by editor(s) in revised form: May 21, 2007
Published electronically: November 12, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society