Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An algebraic model for chains on $ \Omega BG{}^{^\wedge}_p$


Author: Dave Benson
Journal: Trans. Amer. Math. Soc. 361 (2009), 2225-2242
MSC (2000): Primary 55P35, 55R35, 20C20; Secondary 55P60, 20J06, 13C40, 14M10
DOI: https://doi.org/10.1090/S0002-9947-08-04728-4
Published electronically: November 19, 2008
MathSciNet review: 2465835
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide an interpretation of the homology of the loop space on the $ p$-completion of the classifying space of a finite group in terms of representation theory, and demonstrate how to compute it. We then give the following reformulation. If $ f$ is an idempotent in $ kG$ such that $ f.kG$ is the projective cover of the trivial module $ k$, and $ e=1-f$, then we exhibit isomorphisms for $ n\ge 2$:

$\displaystyle H_n(\Omega BG {}^{^\wedge}_p;k)$ $\displaystyle \cong \mathrm{Tor}_{n-1}^{e.kG.e}(kG.e,e.kG),$    
$\displaystyle H^n(\Omega BG{}^{^\wedge}_p;k)$ $\displaystyle \cong \mathrm{Ext}^{n-1}_{e.kG.e}(e.kG,e.kG).$    

Further algebraic structure is examined, such as products and coproducts, restriction and Steenrod operations.


References [Enhancements On Off] (What's this?)

  • 1. D. J. Benson, Representations and Cohomology II: Cohomology of groups and modules, Cambridge Studies in Advanced Mathematics, vol. 31, Cambridge University Press, 1991, reprinted in paperback, 1998. MR 1156302 (93g:20099)
  • 2. D. J. Benson and H. Krause, Complexes of injective $ kG$-modules, Algebra and Number Theory 2 (2008), 1-30. MR 2377361
  • 3. E. Bombieri, Thompson's problem $ (\sigma^2=3)$, Invent. Math. 58 (1980), 77-100. MR 570875 (81f:20019)
  • 4. W. Bosma and J. Cannon, Handbook of Magma Functions, Magma Computer Algebra, Sydney, 1996.
  • 5. A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, vol. 304, Springer-Verlag, Berlin/New York, 1972. MR 0365573 (51:1825)
  • 6. F. R. Cohen and R. Levi, On the homotopy theory of $ p$-completed classifying spaces, Group representations: cohomology, group actions and topology (Seattle, WA, 1996), Proc. Symp. Pure Math., vol. 63, American Math. Society, 1998, pp. 157-182. MR 1603147 (99e:55026)
  • 7. W. G. Dwyer and J. P. C. Greenlees, Complete modules and torsion modules, Amer. J. Math. 124 (2002), 199-220. MR 1879003 (2003g:16010)
  • 8. W. G. Dwyer, J. P. C. Greenlees, and S. Iyengar, Duality in algebra and topology, Adv. in Math. 200 (2006), 357-402. MR 2200850 (2006k:55017)
  • 9. -, Finiteness in derived categories of local rings, Comment. Math. Helvetici 81 (2006), 383-432. MR 2225632 (2007b:13021)
  • 10. Y. Félix, S. Halperin, and J.-C. Thomas, Hopf algebras of polynomial growth, J. Algebra 125 (1989), 408-417. MR 1018954 (90j:16021)
  • 11. -, Elliptic Hopf algebras, J. London Math. Soc. 43 (1991), 545-555. MR 1113392 (92i:57033)
  • 12. -, Elliptic spaces II, Enseign. Math. 39 (1993), 25-32. MR 1225255 (94f:55008)
  • 13. N. L. Gordeev, Finite linear groups whose algebra of invariants is a complete intersection, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 343-392. MR 842586 (88a:13020)
  • 14. T. H. Gulliksen, A homological characterization of local complete intersections, Compositio Math. 23 (1971), 251-255. MR 0301008 (46:168)
  • 15. -, On the deviations of a local ring, Math. Scand. 47 (1980), 5-20. MR 600076 (82c:13022)
  • 16. V. Kac and K. Watanabe, Finite linear groups whose ring of invariants is a complete intersection, Bull. Amer. Math. Soc. 6 (1982), 221-223. MR 640951 (83h:14042)
  • 17. R. Levi, On finite groups and homotopy theory, Mem. AMS, vol. 567, American Math. Society, 1995. MR 1308466 (96c:55019)
  • 18. -, A counter-example to a conjecture of Cohen, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guí xols, 1994), Birkhäuser Verlag, Basel, 1996, pp. 261-269. MR 1397737 (97d:55027)
  • 19. -, On homological rate of growth and the homotopy type of $ \Omega BG_p^{^\wedge}$, Math. Zeit. 226 (1997), 429-444. MR 1483541 (98k:55016)
  • 20. -, On $ p$-completed classifying spaces of discrete groups and finite complexes, J. London Math. Soc. 59 (1999), 1064-1080. MR 1709097 (2000m:55019)
  • 21. H. Nakajima, Quotient singularities which are complete intersections, Manuscripta Math. 48 (1984), 163-187. MR 753729 (86h:14039)
  • 22. -, Quotient complete intersections of affine spaces by finite linear groups, Nagoya Math. J. 98 (1985), 1-36. MR 792768 (87c:14056)
  • 23. H. Nakajima and K. Watanabe, The classification of quotient singularities which are complete intersections, Complete Intersections, Acireale 1983, Lecture Notes in Mathematics, vol. 1092, Springer-Verlag, Berlin/New York, 1984, pp. 102-120. MR 775879 (86c:14002)
  • 24. J. H. Walter, The characterization of finite groups with abelian Sylow $ 2$-subgroups, Ann. of Math. 89 (1969), 405-514. MR 0249504 (40:2749)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55P35, 55R35, 20C20, 55P60, 20J06, 13C40, 14M10

Retrieve articles in all journals with MSC (2000): 55P35, 55R35, 20C20, 55P60, 20J06, 13C40, 14M10


Additional Information

Dave Benson
Affiliation: Department of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, Scotland
Email: bensondj@maths.abdn.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-08-04728-4
Received by editor(s): July 25, 2007
Published electronically: November 19, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society