Depths of multiplier ideals and integral closure

Author:
Seunghun Lee

Journal:
Trans. Amer. Math. Soc. **361** (2009), 2665-2677

MSC (2000):
Primary 14E99; Secondary 13C15, 13B22

Published electronically:
December 4, 2008

MathSciNet review:
2471934

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we study how the depths of multiplier ideals behave under restriction. We also study possible values of the depths of multiplier ideals in the filtrations induced from maximal ideal sheaves. We then use it to give a sufficient condition for the integral closedness of the product of a multiplier ideal and a power of maximal ideal sheaf in the spirit of Huneke.

**[EM06]**Lawrence Ein and Mircea Mustaţă,*Invariants of singularities of pairs*, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 583–602. MR**2275611****[Eis99]**David Eisenbud,*Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR**1322960****[HY03]**Nobuo Hara and Ken-Ichi Yoshida,*A generalization of tight closure and multiplier ideals*, Trans. Amer. Math. Soc.**355**(2003), no. 8, 3143–3174 (electronic). MR**1974679**, 10.1090/S0002-9947-03-03285-9**[HH99]**Melvin Hochster and Craig Huneke,*Tight closure*, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 305–324. MR**1015524**, 10.1007/978-1-4612-3660-3_15**[Hun86]**Craig Huneke,*The primary components of and integral closures of ideals in 3-dimensional regular local rings*, Math. Ann.**275**(1986), no. 4, 617–635. MR**859334**, 10.1007/BF01459141**[Laz00]**Robert Lazarsfeld,*Positivity in algebraic geometry. II*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR**2095472****[LL06]**Robert Lazarsfeld and Kyungyong Lee,*Local syzygies of multiplier ideals*, Invent. Math.**167**(2007), no. 2, 409–418. MR**2270459**, 10.1007/s00222-006-0019-9**[Lee06]**Seunghun Lee,*Filtrations and local syzygies of multiplier ideals*, J. Algebra**315**(2007), no. 2, 629–639. MR**2351883**, 10.1016/j.jalgebra.2007.01.035**[Lip69]**Joseph Lipman,*Rational singularities, with applications to algebraic surfaces and unique factorization*, Inst. Hautes Études Sci. Publ. Math.**36**(1969), 195–279. MR**0276239****[Tak04]**Shunsuke Takagi,*An interpretation of multiplier ideals via tight closure*, J. Algebraic Geom.**13**(2004), no. 2, 393–415. MR**2047704**, 10.1090/S1056-3911-03-00366-7**[ZS75]**Oscar Zariski and Pierre Samuel,*Commutative algebra II*, Graduate Texts in Mathematics, Springer-Verlag, 1975.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
14E99,
13C15,
13B22

Retrieve articles in all journals with MSC (2000): 14E99, 13C15, 13B22

Additional Information

**Seunghun Lee**

Affiliation:
Department of Mathematics, Konkuk University, Kwangjin-Gu Hwayang-dong 1,Seoul 143-701, Korea

Email:
mbrs@konkuk.ac.kr

DOI:
http://dx.doi.org/10.1090/S0002-9947-08-04617-5

Keywords:
Multiplier ideal,
depth,
integral closure

Received by editor(s):
April 6, 2007

Received by editor(s) in revised form:
August 18, 2007

Published electronically:
December 4, 2008

Additional Notes:
This research was supported by R14-2002-007-01001-0

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.