Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generalized Stark formulae over function fields


Author: Ki-Seng Tan
Journal: Trans. Amer. Math. Soc. 361 (2009), 2277-2304
MSC (2000): Primary 11S40; Secondary 11R42, 11R58
DOI: https://doi.org/10.1090/S0002-9947-08-04830-7
Published electronically: December 23, 2008
MathSciNet review: 2471918
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish formulae of Stark type for the Stickelberger elements in the function field setting. Our result generalizes work of Hayes and a conjecture of Gross. It is used to deduce a $ p$-adic version of the Rubin-Stark Conjecture and the Burns Conjecture.


References [Enhancements On Off] (What's this?)

  • [Aok91] N. Aoki, Gross' conjecture on the special values of abelian $ L$-functions at $ s=0$, Comm. Math. Univ. Sancti Pauli 40(1991) 101-124. MR 1104783 (93f:11084)
  • [Aok03] N. Aoki, On Tate's refinement for a conjecture of Gross and its generalization, Journal de Theorie des Nombres Bordeaux 16 no. 3(2004) 457-486. MR 2144953 (2006c:11134)
  • [Bun02] D. Burns, On relations between derivatives of abelian $ L$-functions at $ s=0$, preprint, 2002.
  • [Bun04] D. Burns, On the values of equivariant zeta functions of curves over finite fields, Documenta math. 9(2004) 357-399. MR 2117419 (2005i:11079)
  • [Bun07] D. Burns, Congruences between derivatives of abelian $ L$-functions at $ s=0$, Invent. Math. 169(2007) 451-499. MR 2336038
  • [BnL04] D. Burns and J. Lee, On the refined class number formula of Gross, J. Number Theory 107(2004) 282-286. MR 2072389 (2005k:11227)
  • [Dar95] H. Darmon, Thaine's method for circular units and a conjecture of Gross, Canadian J. Math. 47(1995) 302-317. MR 1335080 (96h:11113)
  • [Gro88] B. Gross, On the values of abelian $ L$-functions at $ s=0$, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 35(1988) 177-197. MR 931448 (89h:11071)
  • [Gro90] B. Gross, A note on the refined Stark Conjecture, unpublished.
  • [Hay88] D. Hayes, The refined $ p$-adic abelian Stark conjecture in function fields, Invent. Math. 94(1988) 505-527. MR 969242 (89k:11116)
  • [Haw04] A. Hayward, A class number formula for higher derivatives of abelian $ L$-functions, Compositio Math. 140(2004) 99-129. MR 1984423 (2004f:11133)
  • [Hua04] P.-Y. Huang, Gross' conjecture for extensions ramified over four points of $ {\bf P}^1$, manuscript, 2004, submitted.
  • [Kis93] H. Kisilevsky, Multiplicative independence in function fields, J. Number Theory 44(1993) 352-355. MR 1233295 (94k:11125)
  • [Lee97] J. Lee, On Gross' refined class number formula for elementary abelian extensions, J. Math. Sci. Univ. Tokyo 4(2)(1997) 373-383. MR 1466351 (99c:11137)
  • [Lee02] J. Lee, Stickelberger elements for cyclic extensions and the order of vanishing of abelian L-functions at $ s=0$, Compositio Math. 138(2003) 157-163. MR 2018824 (2004k:11177)
  • [Lee04] J. Lee, On the refined class number formula for global function fields, Math. Res. Letters 11(2004) 583-589. MR 2106227 (2005k:11225)
  • [Pop99a] C.D. Popescu, Gras-type conjectures for function fields, Compositio Math. 118(1999), no. 3 263-290. MR 1711315 (2000m:11116)
  • [Pop99b] C.D. Popescu, On a refined Stark conjecture for function fields, Compositio Math. 116(1999), no. 3 321-367. MR 1691163 (2000m:11115)
  • [Pop02] C.D. Popescu, Base change for Stark-type conjectures ``over $ \mathbb{Z}$'', J. Reine Angew. Math. 542(2002), 85-111. MR 1880826 (2002k:11208)
  • [Pop05] C.D. Popescu, The Rubin-Stark conjecture for a special class of function field extensions, J. Number Theory 113(2005), no. 2 276-307. MR 2153279 (2006b:11143)
  • [Rei02] M. Reid, Gross' conjecture for extensions ramified over three points of $ {\bf P}^1$, J. Math. Sci. Univ. Tokyo 10(2003), no. 1 119-138. MR 1963800 (2004a:11121)
  • [Rub96] K. Rubin, A Stark conjecture over $ \mathbb{Z}$ for abelian $ L$-functions with multiple zeros, Ann. Inst. Fourier 46(1996) 32-62. MR 1385509 (97d:11174)
  • [San87] J. Sands, Stark's conjecture and abelian $ L$-function with higher order zero at $ s=0$, Advances in Math. 66(1987) 62-87. MR 905927 (89g:11110)
  • [Stk71] H. M. Stark, $ L$-functions at $ s=1$. I. $ L$-functions for quadratic forms, Adv. in Math. 7(1971) 301-343. MR 0289429 (44:6620)
  • [Stk75] H. M. Stark, $ L$-functions at $ s=1$. II. Artin $ L$-functions with rational characters, Adv. in Math. 17(1975) 60-92-343. MR 0382194 (52:3082)
  • [Stk76] H. M. Stark, $ L$-functions at $ s=1$. III. Totally real fields and Hilbert's twelfth problem, Adv. in Math. 22(1976) 64-84. MR 0437501 (55:10427)
  • [Stk80] H. M. Stark, $ L$-functions at $ s=1$. IV. First derivatives at $ s=0$, Adv. in Math. 35(1980) 197-235. MR 563924 (81f:10054)
  • [Tat84] J. Tate, Les Conjectures de Stark sur les Fonctions $ L$ d'Artin en $ s=0$ (Birkhauser, Boston, 1984). MR 782485 (86e:11112)
  • [Tat97] J. Tate, A letter to Joongul Lee, 22 July 1997.
  • [Tat04] J. Tate, Refining Gross's conjecture on the values of abelian $ L$-functions, Contemp. Math. 353(2004) 189-192. MR 2088717 (2005g:11220)
  • [Tan95] K.-S. Tan, On the special values of abelian $ L$-function, J. Math. Sci., Univ. Tokyo 1(1995) 305-319. MR 1317462 (96b:11152)
  • [Tan04] K.-S. Tan, A note on Stickelberger elements for cyclic p-extensions over global function fields of characteristic p, Math. Res. Letters 11(2004) 273-278. MR 2067472 (2005c:11142)
  • [Van70] B.L. Van Der Waerden, Algebra (Frederick Unger, New York, 1970).
  • [Yam89] M. Yamagishi, On a conjecture of Gross on special values of $ L$-functions, Math. Z. 201(1989) 391-400. MR 999736 (90g:11159)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11S40, 11R42, 11R58

Retrieve articles in all journals with MSC (2000): 11S40, 11R42, 11R58


Additional Information

Ki-Seng Tan
Affiliation: Department of Mathematics, National Taiwan University, Taipei 10764, Taiwan
Email: tan@math.ntu.edu.tw

DOI: https://doi.org/10.1090/S0002-9947-08-04830-7
Keywords: Stickelberger element, special values of $L$-functions, Stark Conjecture, conjecture of Gross, class numbers, local Leopoldt conjecture, Rubin's conjecture, conjecture of Rubin and Burns, regulators
Received by editor(s): June 26, 2006
Published electronically: December 23, 2008
Additional Notes: The author was supported in part by the National Science Council of Taiwan, NSC91-2115-M-002-001, NSC93-2115-M-002-007.
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society