Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A trace on fractal graphs and the Ihara zeta function

Authors: Daniele Guido, Tommaso Isola and Michel L. Lapidus
Journal: Trans. Amer. Math. Soc. 361 (2009), 3041-3070
MSC (2000): Primary 11M41, 46Lxx, 05C38; Secondary 05C50, 28A80, 11M36, 30D05
Published electronically: December 29, 2008
MathSciNet review: 2485417
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Starting with Ihara's work in 1968, there has been a growing interest in the study of zeta functions of finite graphs, by Sunada, Hashimoto, Bass, Stark and Terras, Mizuno and Sato, to name just a few authors. Then, Clair and Mokhtari-Sharghi studied zeta functions for infinite graphs acted upon by a discrete group of automorphisms. The main formula in all these treatments establishes a connection between the zeta function, originally defined as an infinite product, and the Laplacian of the graph. In this article, we consider a different class of infinite graphs. They are fractal graphs, i.e. they enjoy a self-similarity property. We define a zeta function for these graphs and, using the machinery of operator algebras, we prove a determinant formula, which relates the zeta function with the Laplacian of the graph. We also prove functional equations, and a formula which allows approximation of the zeta function by the zeta functions of finite subgraphs.

References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah. Elliptic operators, discrete groups and von Neumann algebras, Soc. Math. de France, Astérisque 32-33 (1976), 43-72. MR 0420729 (54:8741)
  • 2. M. T. Barlow. Heat kernels and sets with fractal structure, in: ``Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces'' (Paris, 2002), Contemp. Math. 338, Amer. Math. Soc., Providence, RI, 2003, pp. 11-40. MR 2039950 (2005e:60166)
  • 3. L. Bartholdi. Counting paths in graphs, Enseign. Math. 45 (1999), 83-131. MR 1703364 (2000f:05047)
  • 4. H. Bass. The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), 717-797. MR 1194071 (94a:11072)
  • 5. H. Bass, A. Lubotzky. Tree Lattices, Progress in Math. 176, Birkhäuser, Boston, 2001. MR 1794898 (2001k:20056)
  • 6. F. Cipriani, D. Guido, T. Isola. A C$ ^{*}$-algebra of geometric operators on self-similar CW-complexes. Novikov-Shubin and L$ ^{2}$-Betti numbers, accepted for publication in the Journal of Functional Analysis.
  • 7. B. Clair, S. Mokhtari-Sharghi. Zeta functions of discrete groups acting on trees, J. Algebra 237 (2001), 591-620. MR 1816705 (2002f:11119)
  • 8. B. Clair, S. Mokhtari-Sharghi. Convergence of zeta functions of graphs, Proc. Amer. Math. Soc. 130 (2002), 1881-1886. MR 1896018 (2003f:11130)
  • 9. G. Elek. Aperiodic order, integrated density of states and the continuous algebras of John von Neumann, preprint 2006, arXiv:math-ph/0606061.
  • 10. M. Farber. Geometry of growth: Approximation theorems for $ L^2$ invariants, Math. Ann. 311 (1998), 335-375. MR 1625742 (2000b:58042)
  • 11. D. Foata, D. Zeilberger. A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs, Trans. Amer. Math. Soc. 351 (1999), 2257-2274. MR 1487614 (99i:05137)
  • 12. B. Fuglede, R. V. Kadison. Determinant theory in finite factors, Ann. Math. 55 (1952), 520-530. MR 0052696 (14:660a)
  • 13. R. I. Grigorchuk, A.  $ \dot{\text{Z}}$uk. The Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps, in: ``Random Walks and Geometry'', Proc. Workshop (Vienna, 2001), V. A. Kaimanovich et al., eds., de Gruyter, Berlin, 2004, pp. 141-180. MR 2087782 (2005g:11168)
  • 14. D. Guido, T. Isola, A semicontinuous trace for almost local operators on an open manifold, International Journal of Mathematics 12 (2001), 1087-1102. MR 1871337 (2003i:58050)
  • 15. D. Guido, T. Isola, Dimensions and spectral triples for fractals in $ \mathbb{R}^n$, in ``Advances in Operator Algebras and Mathematical Physics'', 89-108, Theta Ser. Adv. Math., 5, Theta, Bucharest, 2005. MR 2238285
  • 16. D. Guido, T. Isola, M. L. Lapidus. Ihara zeta functions for periodic simple graphs, $ C\sp *$-algebras and elliptic theory II-papers from the International Conference held in Bedlewo, January 2006, 103-121. Edited by Burghelea, D.; Melrose, R.; Mishchenko, A.; Troitsky, E. Trends in Mathematics. Birkhäuser Verlag, Basel, 2008.
  • 17. D. Guido, T. Isola, M. L. Lapidus. Ihara's zeta function for periodic graphs and its approximation in the amenable case, Journal of Functional Analysis 255 (2008), 1339-1361.
  • 18. B. M. Hambly, T. Kumagai. Heat kernel estimates for symmetric random walks on a class of fractal graphs and stability under rough isometries, in: ``Fractal Geometry and Applications: A jubilee of Benoit Mandelbrot'', Proc. Sympos. Pure Math., 72, Part 2, Amer. Math. Soc., Providence, RI, 2004, pp. 233-259. MR 2112125 (2005k:60141)
  • 19. K. Hashimoto, A. Hori. Selberg-Ihara's zeta function for $ p$-adic discrete groups, in: ``Automorphic Forms and Geometry of Arithmetic Varieties'', Adv. Stud. Pure Math. 15, Academic Press, Boston, MA, 1989, pp. 171-210. MR 1040608 (91g:11053)
  • 20. K. Hashimoto. Zeta functions of finite graphs and representations of $ p$-adic groups, in: ``Automorphic Forms and Geometry of Arithmetic Varieties'', Adv. Stud. Pure Math. 15, Academic Press, Boston, MA, 1989, pp. 211-280. MR 1040609 (91i:11057)
  • 21. K. Hashimoto. On zeta and L-functions of finite graphs, Internat. J. Math. 1 (1990), 381-396. MR 1080105 (92e:11089)
  • 22. K. Hashimoto. Artin type L-functions and the density theorem for prime cycles on finite graphs, Internat. J. Math. 3 (1992), 809-826. MR 1194073 (94c:11083)
  • 23. M. D. Horton, H. M. Stark, A. A. Terras. What are zeta functions of graphs and what are they good for?, Quantum graphs and their applications, 173-189, Contemp. Math., 415, Amer. Math. Soc., Providence, RI, 2006. MR 2277616 (2007i:05088)
  • 24. Y. Ihara. On discrete subgroups of the two by two projective linear group over $ \mathfrak{p}$-adic fields, J. Math. Soc. Japan 18 (1966), 219-235. MR 0223463 (36:6511)
  • 25. M. Kotani, T. Sunada. Zeta functions of finite graphs, J. Math. Sci. Univ. Tokyo 7 (2000), 7-25. MR 1749978 (2001f:68110)
  • 26. B. Krön. Green functions on self-similar graphs and bounds for the spectrum of the Laplacian. Ann. Inst. Fourier (Grenoble) 52 (2002), 1875-1900. MR 1954327 (2003k:60180)
  • 27. B. Krön. Growth of self-similar graphs. J. Graph Theory 45 (2004), 224-239. MR 2037759 (2004m:05090)
  • 28. B. Krön, E. Teufl. Asymptotics of the transition probabilities of the simple random walk on self-similar graphs, Trans. Amer. Math. Soc. 356 (2004), 393-414. MR 2020038 (2004k:60130)
  • 29. M. L. Lapidus, M. van Frankenhuysen. Fractal Geometry and Number Theory: Complex dimensions of fractal strings and zeros of zeta functions, Birkhäuser, Boston, 2000. MR 1726744 (2001b:11079)
  • 30. M. L. Lapidus, M. van Frankenhuijsen. Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and spectra of fractal strings, Springer Monographs in Mathematics, Springer-Verlag, New York, 2006. MR 2245559 (2007j:11001)
  • 31. H. Mizuno, I. Sato. Bartholdi zeta functions of some graphs, Discrete Math. 206 (2006), 220-230. MR 2203806 (2006k:05137)
  • 32. B. Mohar. The spectrum of an infinite graph, Linear Algebra Appl. 48 (1982), 245-256. MR 683222 (84d:05123)
  • 33. B. Mohar, W. Woess. A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1989), 209-234. MR 986363 (90d:05162)
  • 34. S. Northshield. A note on the zeta function of a graph. J. Combin. Theory Ser. B 74 (1998), 408-410. MR 1654160 (99g:05106)
  • 35. S. Northshield. Two proofs of Ihara's theorem. Emerging applications of number theory (Minneapolis, MN, 1996), 469-478, IMA Vol. Math. Appl., 109, Springer, New York, 1999. MR 1691545 (2000f:11115)
  • 36. J. Roe. An index theorem on open manifolds I & II, J. Diff. Geom. 27 (1988), 87-113 & 115-136. MR 918459 (89a:58102)
  • 37. J.-P. Serre. Trees, Springer-Verlag, New York, 1980. MR 607504 (82c:20083)
  • 38. J.-P. Serre. Répartition asymptotique des valeurs propres de l'opérateur de Hecke $ T\sb p$, J. Amer. Math. Soc. 10 (1997), 75-102. MR 1396897 (97h:11048)
  • 39. H. M. Stark, A. A. Terras. Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), 126-165. MR 1399606 (98b:11094)
  • 40. H. M. Stark, A. A. Terras. Zeta functions of finite graphs and coverings. II, Adv. Math. 154 (2000), 132-195. MR 1780097 (2002f:11123)
  • 41. H. M. Stark, A. A. Terras. Zeta functions of finite graphs and coverings. III, Adv. Math. 208 (2007), 467-489. MR 2304325
  • 42. T. Sunada. $ L$-functions in geometry and some applications, in: ``Curvature and Topology of Riemannian Manifolds'' (Kutata, 1985), Springer Lecture Notes in Math. 1201, Springer-Verlag, Berlin, 1986, pp. 266-284. MR 859591 (88g:58152)
  • 43. R. Exel. Rotation numbers for automorphisms of $ C^*$ algebras, Pacific J. Math. 127 (1987), 31-89.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11M41, 46Lxx, 05C38, 05C50, 28A80, 11M36, 30D05

Retrieve articles in all journals with MSC (2000): 11M41, 46Lxx, 05C38, 05C50, 28A80, 11M36, 30D05

Additional Information

Daniele Guido
Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, I–00133 Roma, Italy

Tommaso Isola
Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, I–00133 Roma, Italy

Michel L. Lapidus
Affiliation: Department of Mathematics, University of California, Riverside, California 92521-0135

Keywords: Self-similar fractal graphs, Ihara zeta function, geometric operators, C*-algebra, analytic determinant, determinant formula, primitive cycles, Euler product, functional equations, amenable graphs, approximation by finite graphs
Received by editor(s): May 31, 2007
Published electronically: December 29, 2008
Additional Notes: The first and second authors were partially supported by MIUR, GNAMPA and by the European Network “Quantum Spaces - Noncommutative Geometry” HPRN-CT-2002-00280
The third author was partially supported by the National Science Foundation, the Academic Senate of the University of California, and GNAMPA
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society