Supercharacter formulas for pattern groups
Authors:
Persi Diaconis and Nathaniel Thiem
Journal:
Trans. Amer. Math. Soc. 361 (2009), 35013533
MSC (2000):
Primary 20C99, 05Exx
Published electronically:
March 4, 2009
MathSciNet review:
2491890
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: C. Andre and N. Yan introduced the idea of a supercharacter theory to give a tractable substitute for character theory in wild groups such as the unipotent uppertriangular group . In this theory superclasses are certain unions of conjugacy classes, and supercharacters are a set of characters which are constant on superclasses. This paper gives a character formula for a supercharacter evaluated at a superclass for pattern groups and more generally for algebra groups.
 1.
Carlos
A. M. André, Basic characters of the unitriangular
group, J. Algebra 175 (1995), no. 1,
287–319. MR 1338979
(96h:20081a), http://dx.doi.org/10.1006/jabr.1995.1187
 2.
Carlos
A. M. André, Irreducible characters of finite algebra
groups, Matrices and group representations (Coimbra, 1998) Textos
Mat. Sér. B, vol. 19, Univ. Coimbra, Coimbra, 1999,
pp. 65–80. MR 1773571
(2001g:20009)
 3.
Carlos
A. M. André, The basic character table of the unitriangular
group, J. Algebra 241 (2001), no. 1,
437–471. MR 1839342
(2002e:20082), http://dx.doi.org/10.1006/jabr.2001.8734
 4.
Carlos
A. M. André, Basic characters of the unitriangular
group (for arbitrary primes), Proc. Amer. Math.
Soc. 130 (2002), no. 7, 1943–1954 (electronic). MR 1896026
(2003g:20075), http://dx.doi.org/10.1090/S0002993902062871
 5.
Carlos
A. M. André and Ana
Margarida Neto, Supercharacters of finite unipotent groups of
types 𝐵_{𝑛}, 𝐶_{𝑛} and
𝐷_{𝑛}, J. Algebra 305 (2006),
no. 1, 394–429. MR 2264135
(2007j:20013), http://dx.doi.org/10.1016/j.jalgebra.2006.04.030
 6.
André, C; Nicolás, A. ``Supercharacters of the adjoint group of a finite radical ring,'' August 2006 preprint.
 7.
Antonio
VeraLópez and J.
M. Arregi, Computing in unitriangular matrices over finite
fields, Linear Algebra Appl. 387 (2004),
193–219. MR 2069276
(2005c:20082), http://dx.doi.org/10.1016/j.laa.2004.02.008
 8.
Ery
AriasCastro, Persi
Diaconis, and Richard
Stanley, A superclass walk on uppertriangular matrices, J.
Algebra 278 (2004), no. 2, 739–765. MR 2071663
(2005f:60101), http://dx.doi.org/10.1016/j.jalgebra.2004.04.005
 9.
Roger
W. Carter, Finite groups of Lie type, Pure and Applied
Mathematics (New York), John Wiley & Sons, Inc., New York, 1985.
Conjugacy classes and complex characters; A WileyInterscience Publication.
MR 794307
(87d:20060)
 10.
Persi
Diaconis and I.
M. Isaacs, Supercharacters and superclasses for
algebra groups, Trans. Amer. Math. Soc.
360 (2008), no. 5,
2359–2392. MR 2373317
(2009c:20012), http://dx.doi.org/10.1090/S0002994707043656
 11.
Persi
Diaconis and Laurent
SaloffCoste, Comparison techniques for random walk on finite
groups, Ann. Probab. 21 (1993), no. 4,
2131–2156. MR 1245303
(95a:60009)
 12.
Isaacs, M. ``Counting characters of upper triangular groups,'' September 2006 preprint.
 13.
G.
I. Lehrer, Discrete series and the unipotent subgroup,
Compositio Math. 28 (1974), 9–19. MR 0340438
(49 #5193)
 14.
Richard
S. Pierce, Associative algebras, Graduate Texts in
Mathematics, vol. 88, SpringerVerlag, New YorkBerlin, 1982. Studies
in the History of Modern Science, 9. MR 674652
(84c:16001)
 15.
Geoffrey
R. Robinson, Counting conjugacy classes of unitriangular groups
associated to finitedimensional algebras, J. Group Theory
1 (1998), no. 3, 271–274. MR 1633196
(99h:14025), http://dx.doi.org/10.1515/jgth.1998.018
 16.
Eugene
Spiegel and Christopher
J. O’Donnell, Incidence algebras, Monographs and
Textbooks in Pure and Applied Mathematics, vol. 206, Marcel Dekker,
Inc., New York, 1997. MR 1445562
(98g:06001)
 17.
Yan, N. Representation theory of the finite unipotent linear groups, Unpublished Ph.D. Thesis, Department of Mathematics, Pennsylvania State Unversity, 2001.
 18.
Yan, N. ``Representations of finite unipotent linear groups by the method of clusters,'' 2006 preprint.
 1.
 André, C. ``Basic characters of the unitriangular group,'' Journal of algebra 175 (1995), 287319. MR 1338979 (96h:20081a)
 2.
 André, C. ``Irreducible characters of finite algebra groups,'' Matrices and group representations Coimbra, 1998, Textos Mat. Sér B 19 (1999), 6580. MR 1773571 (2001g:20009)
 3.
 André, C. ``The basic character table of the unitriangular group,'' Journal of Algebra 241 (2001), 437471. MR 1839342 (2002e:20082)
 4.
 André, C. ``Basic characters of the unitriangular group (for arbitrary primes),'' Proceedings of the American Mathematical Society 130 (2002), 19341954. MR 1896026 (2003g:20075)
 5.
 André, C; Neto, A. ``Supercharacters of finite unipotent groups of types , and ,'' J. Algebra 305 (2006), 394429. MR 2264135 (2007j:20013)
 6.
 André, C; Nicolás, A. ``Supercharacters of the adjoint group of a finite radical ring,'' August 2006 preprint.
 7.
 Arregi, J; VeraLopez, A. ``Computing in unitriangular matrices over finite fields.'' Linear algebra applications 387 (2004), 193219. MR 2069276 (2005c:20082)
 8.
 AriasCastro, E; Diaconis, P; Stanley, R. ``A superclass walk on uppertriangular matrices,'' Journal of Algebra 278 (2004), 739765. MR 2071663 (2005f:60101)
 9.
 Carter, R. Finite groups of Lie type: Conjugacy classes and complex characters. John Wiley and Sons, 1985. MR 794307 (87d:20060)
 10.
 Diaconis, P; Isaacs, M. ``Supercharacters and superclasses for algebra groups,'' Transactions of the American Mathematical Society, 360 (2008), 23592392. MR 2373317
 11.
 Diaconis, P; SaloffCoste, L. ``Comparison techniques for random walk on finite groups,'' Annals of Probability 21 (1993), 21312156. MR 1245303 (95a:60009)
 12.
 Isaacs, M. ``Counting characters of upper triangular groups,'' September 2006 preprint.
 13.
 Lehrer, G. ``Discrete series and the unipotent subgroup,'' Compositio Mathematica 28 (1974), 919. MR 0340438 (49:5193)
 14.
 Pierce, R. Associative Algebras, Graduate Texts in Mathematics 88. Studies in the History of Modern Science 9. SpringerVerlag, New YorkBerlin, 1982. MR 674652 (84c:16001)
 15.
 Robinson, G. ``Counting conjugacy classes of unitriangular groups associated to finitedimensional algebras,'' Journal of Group Theory 1 (1998), 271274. MR 1633196 (99h:14025)
 16.
 Spiegel, E; O'Donnell, C. Incidence algebras, Monographs and textbooks in pure mathematics 206, Marcel Dekker, Inc., New York: 1997. MR 1445562 (98g:06001)
 17.
 Yan, N. Representation theory of the finite unipotent linear groups, Unpublished Ph.D. Thesis, Department of Mathematics, Pennsylvania State Unversity, 2001.
 18.
 Yan, N. ``Representations of finite unipotent linear groups by the method of clusters,'' 2006 preprint.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
20C99,
05Exx
Retrieve articles in all journals
with MSC (2000):
20C99,
05Exx
Additional Information
Persi Diaconis
Affiliation:
Department of Mathematics, Stanford University, Stanford, California 943054065
Nathaniel Thiem
Affiliation:
Department of Mathematics, Stanford University, 450 Serra Mall, Building 380, Stanford, California 943052125
Address at time of publication:
Department of Mathematics, University of Colorado, Campus Box 395, Boulder, Colorado 803090395
DOI:
http://dx.doi.org/10.1090/S0002994709045218
PII:
S 00029947(09)045218
Keywords:
Supercharacters,
superclasses,
finite unipotent group,
algebra group,
posets
Received by editor(s):
October 5, 2006
Received by editor(s) in revised form:
March 1, 2007
Published electronically:
March 4, 2009
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
