Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Collapsing manifolds obtained by Kummer-type constructions


Authors: Gabriel P. Paternain and Jimmy Petean
Journal: Trans. Amer. Math. Soc. 361 (2009), 4077-4090
MSC (2000): Primary 53C23, 53C20
DOI: https://doi.org/10.1090/S0002-9947-09-04704-7
Published electronically: April 1, 2009
MathSciNet review: 2500879
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct $ \mathcal{F}$-structures on a Bott manifold and on some other manifolds obtained by Kummer-type constructions. We also prove that if $ M=E\char93 X$, where $ E$ is a fiber bundle with structure group $ G$ and a fiber admitting a $ G$-invariant metric of non-negative sectional curvature and $ X$ admits an $ \mathcal{F}$-structure with one trivial covering, then one can construct on $ M$ a sequence of metrics with sectional curvature uniformly bounded from below and volume tending to zero (i.e. $ \operatorname{Vol}_K(M)=0$). As a corollary we prove that all the elements in the Spin cobordism ring can be represented by manifolds $ M$ with $ \operatorname{Vol}_K (M)=0$.


References [Enhancements On Off] (What's this?)

  • 1. R. L. Bishop, B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969) 1-49. MR 0251664 (40:4891)
  • 2. J. Cheeger, M. Gromov, Collapsing Riemanniann manifolds while keeping their curvature bounded I, J. Differential Geom. 23 (1986) 309-346. MR 852159 (87k:53087)
  • 3. J. Cheeger, M. Gromov, Collapsing Riemanniann manifolds while keeping their curvature bounded II, J. Differential Geom. 32 (1986) 269-298. MR 1064875 (92a:53066)
  • 4. K. Fukaya, T. Yamaguchi, The fundamental groups of almost non-negatively curved manifolds, Ann. of Math. 136 (1992) 253-333. MR 1185120 (93h:53041)
  • 5. M. Gromov, Volume and bounded cohomology, Publ. Math. IHES 56 (1982) 1-99. MR 686042 (84h:53053)
  • 6. M. Gromov, H.B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980) 423-434. MR 577131 (81h:53036)
  • 7. D. Joyce, Compact Riemannian $ 7$-manifolds with holonomy $ G\sb 2$. I, J. Differential Geom. 43 (1996) 291-328. MR 1424428 (97m:53084)
  • 8. D. Joyce, Compact Riemannian $ 7$-manifolds with holonomy $ G\sb 2$. II, J. Differential Geom. 43 (1996) 329-375. MR 1424428 (97m:53084)
  • 9. D. Joyce, Compact 8-manifolds with holonomy Spin$ (7)$, Invent. Math. 123 (1996) 507-552. MR 1383960 (97d:53052)
  • 10. C. LeBrun, Four-manifolds without Einstein metrics, Math. Res. Lett. 3 (1996) 133-147. MR 1386835 (97a:53072)
  • 11. C. LeBrun, Ricci curvature, minimal volumes, and Seiberg-Witten theory, Invent. Math. 145 (2001) 279-316. MR 1872548 (2002h:53061)
  • 12. J. Lott, $ \hat A$-genus and collapsing, J. Geom. Anal. 10 (2000) 529-543. MR 1794576 (2001m:53082)
  • 13. G.P. Paternain, J. Petean, Minimal entropy and collapsing with curvature bounded from below, Invent. Math. 151 (2003) 415-450. MR 1953264 (2003k:53045)
  • 14. J. Petean, The Yamabe invariant of simply connected manifolds, J. Reine Angew. Math. 523 (2000) 225-231. MR 1762961 (2001g:53075)
  • 15. T. Shioya, T. Yamaguchi, Collapsing three-manifolds under a lower curvature bound, J. Differential Geom. 56 (2000) 1-66. MR 1863020 (2002k:53074)
  • 16. T. Shioya, T. Yamaguchi, Volume collapsed three-manifolds with a lower curvature bound, Math. Ann. 333 no. 1 (2005) 131-155. MR 2169831 (2006j:53050)
  • 17. S. Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. 136 (1992) 511-540. MR 1189863 (93i:57033)
  • 18. C. Sung, Surgery, curvature and minimal volume, Ann. Global Anal. Geom. 26 (2004) 209-229. MR 2097617 (2006c:53032)
  • 19. C.Z. Tan, Ph.D. thesis, University of Cambridge, 2006.
  • 20. C.T.C. Wall, Classification problems in differential topology, V. On certain $ 6$-manifolds, Invent. Math. 1 (1966) 355-374.
  • 21. T. Yamaguchi, Collapsing and pinching under a lower curvature bound, Ann. of Math. 133 (1991) 317-357. MR 1097241 (92b:53067)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C23, 53C20

Retrieve articles in all journals with MSC (2000): 53C23, 53C20


Additional Information

Gabriel P. Paternain
Affiliation: Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, CB3 0WB, England
Email: g.p.paternain@dpmms.cam.ac.uk

Jimmy Petean
Affiliation: Centro de Investigacón en Matemáticas, A.P. 402, 36000, Guanajuato. Gto., México
Email: jimmy@cimat.mx

DOI: https://doi.org/10.1090/S0002-9947-09-04704-7
Received by editor(s): May 18, 2007
Published electronically: April 1, 2009
Additional Notes: The second author was supported by grant 46274-E of CONACYT
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society