Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Instability for standing waves of nonlinear Klein-Gordon equations via mountain-pass arguments


Authors: Louis Jeanjean and Stefan Le Coz
Journal: Trans. Amer. Math. Soc. 361 (2009), 5401-5416
MSC (2000): Primary 35Q53, 35B35, 35A15, 35Q51
DOI: https://doi.org/10.1090/S0002-9947-09-04790-4
Published electronically: May 11, 2009
MathSciNet review: 2515816
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce mountain-pass type arguments in the context of orbital instability for Klein-Gordon equations. Our aim is to illustrate on two examples how these arguments can be useful to simplify proofs and derive new results of orbital stability/instability. For a power-type nonlinearity, we prove that the ground states of the associated stationary equation are minimizers of the functional action on a wide variety of constraints. For a general nonlinearity, we extend to the dimension $ N=2$ the classical instability result for stationary solutions of nonlinear Klein-Gordon equations proved in 1985 by Shatah in dimension $ N\geqslant3$.


References [Enhancements On Off] (What's this?)

  • 1. R. Adams, Sobolev spaces, Pure and Applied Mathematics, 65, Academic Press, (1975). MR 0450957 (56:9247)
  • 2. H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris 293, (1981), 489-492 and Publications du Laboratoire d'Analyse Numérique, Université de Paris VI. MR 646873 (84f:35120)
  • 3. H. Berestycki, T. Gallouet and O. Kavian, Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris 297, (1983), 307-310 and Publications du Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie. MR 734575 (85e:35041)
  • 4. H. Berestycki and P.L. Lions, Nonlinear scalar field equations I, Arch. Ration. Mech. Anal., 82, (1983), 313-346. MR 695535 (84h:35054a)
  • 5. J. Byeon, L. Jeanjean and K. Tanaka, Standing waves for nonlinear Schrödinger equations with a general nonlinearity: One and two dimensional cases, Comm. Partial Differential Equations 33, 4-6, (2008), 1113-1136. MR 2424391
  • 6. T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, (2003). MR 2002047 (2004j:35266)
  • 7. T. Cazenave and A. Haraux, An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and its Applications, 13, Oxford University Press, (1998). MR 1691574 (2000e:35003)
  • 8. T. Cazenave and P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85, 4, (1982), 549-561. MR 677997 (84i:81015)
  • 9. J. Chen and B. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation, Phys. D 227, (2007), 142-148. MR 2332502 (2008c:35301)
  • 10. S. Cingolani, L. Jeanjean and S. Secchi, Multi-peak solutions for magnetic NLS equations without non-degeneracy condition, to appear in ESAIM Contrôle Optim. Calc. Var. DOI: 10.1051/cocv:2008055.
  • 11. S. Coleman, V. Glaser and A. Martin, Action minima among solutions to a class of Euclidean scalar field equations, Comm. Math. Phys. 58, 2, (1978), 211-221. MR 0468913 (57:8716)
  • 12. S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity, Comm. Pure Appl. Math. 59, 11, (2006), 1639-1658. MR 2254447 (2007h:35229)
  • 13. L. Jeanjean and K. Tanaka, A remark on least energy solutions in $ R\sp N$, Proc. Amer. Math. Soc. 131, 8, (2003), 2399-2408. MR 1974637 (2004c:35127)
  • 14. L. Jeanjean and K. Tanaka, A note on a mountain pass characterization of least energy solutions, Adv. Nonlinear Stud. 3, 4, (2003), 445-455. MR 2017241 (2004i:34228)
  • 15. S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud. 8, 3, (2008), 455-463. MR 2426909
  • 16. Y. Liu, Strong instability of solitary-wave solutions to a Kadomtsev-Petviashvili equation in three dimensions, J. Differential Equations 180, 1, (2002), 153-170. MR 1890602 (2003j:35278)
  • 17. Y. Liu, M. Ohta and G. Todorova, Strong instability of solitary waves for nonlinear Klein-Gordon equations and generalized Boussinesq equations, Ann. Henri Poincaré 24, 4, (2007), 539-548. MR 2334991
  • 18. Y. Liu, X.-P. Wang and K. Wang, Instability of standing waves of the Schrödinger equation with inhomogeneous nonlinearity, Trans. Amer. Math. Soc. 358, (2006), 2105-2122. MR 2197450 (2006k:35275)
  • 19. H. Nawa, Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity, J. Math. Soc. Japan 46, 4, (1994), 557-586. MR 1291107 (95g:35195)
  • 20. O. A. Nielsen, An introduction to integration and measure theory, Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley-Interscience, (1997). MR 1468232 (98j:28002)
  • 21. M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces, Publ. Res. Inst. Math. Sci. 37, 3, (2001), 255-293. MR 1855424 (2002k:35213)
  • 22. M. Ohta and G. Todorova, Strong instability of standing waves for nonlinear Klein-Gordon equations, Discrete Contin. Dyn. Syst. 12, 2, (2005), 315-322. MR 2122169 (2005k:35289)
  • 23. M. Ohta and G. Todorova, Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system, SIAM J. Math. Anal. 38, 6, (2007), 1912-1931. MR 2299435 (2008a:35198)
  • 24. J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations, Trans. Amer. Math. Soc. 290, 2, (1985), 701-710. MR 792821 (86k:35088)
  • 25. J. Shatah and W. Strauss, Instability of nonlinear bound states, Comm. Math. Phys. 100, 2, (1985), 173-190. MR 804458 (87b:35159)
  • 26. W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55, 2, (1977), 149-162. MR 0454365 (56:12616)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35Q53, 35B35, 35A15, 35Q51

Retrieve articles in all journals with MSC (2000): 35Q53, 35B35, 35A15, 35Q51


Additional Information

Louis Jeanjean
Affiliation: Laboratoire de Mathématiques, Université de Franche-Comté, 25030 Besançon Cedex, France
Email: louis.jeanjean@univ-fcomte.fr

Stefan Le Coz
Affiliation: Laboratoire de Mathématiques, Université de Franche-Comté, 25030 Besançon Cedex, France
Address at time of publication: Department of Mathematics, Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, 34014 Trieste, Italy
Email: slecoz@univ-fcomte.fr, lecoz@sissa.it

DOI: https://doi.org/10.1090/S0002-9947-09-04790-4
Received by editor(s): October 16, 2007
Published electronically: May 11, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society