Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Additivity of spin$ ^c$-quantization under cutting

Author: Shay Fuchs
Journal: Trans. Amer. Math. Soc. 361 (2009), 5345-5376
MSC (2000): Primary 81S10; Secondary 53C27
Published electronically: May 8, 2009
MathSciNet review: 2515814
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A $ G$-equivariant spin$ ^c$-structure on a manifold gives rise to a virtual representation of the group $ G$, called the spin$ ^c$-quantization of the manifold. We present a cutting construction for $ S^1$-equivariant spin$ ^c$-manifolds and show that the quantization of the original manifold is isomorphic to the direct sum of the quantizations of the cut spaces. Our proof uses Kostant-type formulas, which express the quantization in terms of local data around the fixed point set of the $ S^1$-action.

References [Enhancements On Off] (What's this?)

  • 1. T. Friedrich, Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25, American Mathematical Society, Providence, Rhode Island, 2000. MR 1777332 (2001c:58017)
  • 2. V. Ginzburg, V. Guillemin, and Y. Karshon, Moment maps, Cobordisms, and Hamiltonian Group Actions, Mathematical Surveys and Monograph, vol. 98, American Mathematical Society, 2002. MR 1929136 (2003m:53149)
  • 3. H. Lawson and M. Michelson, Spin Geometry, Princeton, 1989.
  • 4. E. Lerman, Symplectic cuts, Math Res. Letters 2 (1995), 247-258. MR 1338784 (96f:58062)
  • 5. V. Guillemin, S. Sternberg, and J. Weitsman, Signature Quantization, J. Diff. Geometry 66 (2004), 139-168. MR 2128715 (2006g:58044)
  • 6. A. Cannas Da Silva, Y. Karshon, and S. Tolman, Quantization of Presymplectic Manifolds and Circle Actions, Trans. Amer. Math. Society 352(2) (1999), 525-552. MR 1714519 (2000j:53118)
  • 7. M. D. Grossberg and Y. Karshon, Equivariant index and the moment map for completely integrable torus actions, Advances in Math. 133 (1998), 185-223. MR 1604738 (2000f:53112)
  • 8. N. Berline, E. Getzler and M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, 1992. MR 1215720 (94e:58130)
  • 9. S. Kumar and M. Vergne, Equivariant cohomology with generalized coefficients, Astérique 215 (1993), 109-204. MR 1247061 (95f:22019)
  • 10. M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. 87 (1968), 546-604. MR 0236952 (38:5245)
  • 11. S. Fuchs, spin$ ^c$-prequantization and symplectic cutting (in preparation).
  • 12. E. Meinrenken, Symplectic surgery and the Spin-c Dirac operator, Advances in Mathematics 134 (1998), 240-277. MR 1617809 (99h:58179)
  • 13. V. Guillemin and S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Springer-Verlag, Berlin, Heidelberg, 1999. MR 1689252 (2001i:53140)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 81S10, 53C27

Retrieve articles in all journals with MSC (2000): 81S10, 53C27

Additional Information

Shay Fuchs
Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
Address at time of publication: Department of Mathematical and Computational Sciences, University of Toronto Mississauga, 3359 Mississauga Road N., Mississauga, Ontario, L5L 1C6, Canada

Received by editor(s): September 28, 2007
Published electronically: May 8, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society