Smalltime compactness and convergence behavior of deterministically and selfnormalised Lévy processes
Authors:
Ross Maller and David M. Mason
Journal:
Trans. Amer. Math. Soc. 362 (2010), 22052248
MSC (2000):
Primary 60F05, 60F17, 60G51
Published electronically:
November 18, 2009
MathSciNet review:
2574893
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Consider a Lévy process with quadratic variation process , , where denotes the jump process of . We give stability and compactness results, as , for the convergence both of the deterministically normed (and possibly centered) processes and , as well as theorems concerning the ``selfnormalised'' process . Thus, we consider the stochastic compactness and convergence in distribution of the 2vector , for deterministic functions and , as , possibly through a subsequence; and the stochastic compactness and convergence in distribution of , possibly to a nonzero constant (for stability), as , again possibly through a subsequence. As a main application it is shown that , a standard normal random variable, as , if and only if , as , for some nonstochastic function ; thus, is in the domain of attraction of the normal distribution, as , with or without centering constants being necessary (these being equivalent). We cite simple analytic equivalences for the above properties, in terms of the Lévy measure of . Functional versions of the convergences are also given.
 1.
Ole
E. BarndorffNielsen, Thomas
Mikosch, and Sidney
I. Resnick (eds.), Lévy processes, Birkhäuser
Boston, Inc., Boston, MA, 2001. Theory and applications. MR 1833689
(2001m:60004)
 2.
Frank
Beichelt, Stochastic processes in science, engineering and
finance, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR
2207217
 3.
Jean
Bertoin, Lévy processes, Cambridge Tracts in
Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. MR 1406564
(98e:60117)
 4.
J.
Bertoin, R.
A. Doney, and R.
A. Maller, Passage of Lévy processes across power law
boundaries at small times, Ann. Probab. 36 (2008),
no. 1, 160–197. MR 2370602
(2009d:60141), 10.1214/009117907000000097
 5.
N.
H. Bingham, C.
M. Goldie, and J.
L. Teugels, Regular variation, Encyclopedia of Mathematics and
its Applications, vol. 27, Cambridge University Press, Cambridge,
1987. MR
898871 (88i:26004)
 6.
Wolfgang
Breymann, Alexandra
Dias, and Paul
Embrechts, Dependence structures for multivariate highfrequency
data in finance, Selected Proceedings from Quantitative Methods in
Finance, 2002 (Cairns/Sydney), 2003, pp. 1–14. MR
1972372, 10.1088/14697688/3/1/301
 7.
R.
M. Blumenthal and R.
K. Getoor, Sample functions of stochastic processes with stationary
independent increments, J. Math. Mech. 10 (1961),
493–516. MR 0123362
(23 #A689)
 8.
Boris
Buchmann, Ross
Maller, and Alex
Szimayer, An almost sure functional limit theorem at zero for a
class of Lévy processes normed by the square root function, and
applications, Probab. Theory Related Fields 142
(2008), no. 12, 219–247. MR 2413271
(2009k:60074), 10.1007/s0044000701030
 9.
G.
P. Chistyakov and F.
Götze, Limit distributions of Studentized means, Ann.
Probab. 32 (2004), no. 1A, 28–77. MR 2040775
(2005f:60055), 10.1214/aop/1078415828
 10.
de la Peña, V.H., Lai, T.L. and Shao, Q.M. (2009) SelfNormalized Processes: Limit Theory and Statistical Applications. SpringerVerlag, Berlin
 11.
R.
A. Doney and R.
A. Maller, Stability and attraction to normality for Lévy
processes at zero and at infinity, J. Theoret. Probab.
15 (2002), no. 3, 751–792. MR 1922446
(2003g:60076), 10.1023/A:1016228101053
 12.
R.
A. Doney and R.
A. Maller, Stability of the overshoot for Lévy
processes, Ann. Probab. 30 (2002), no. 1,
188–212. MR 1894105
(2003d:60090), 10.1214/aop/1020107765
 13.
R.
A. Doney and R.
A. Maller, Passage times of random walks and Lévy processes
across power law boundaries, Probab. Theory Related Fields
133 (2005), no. 1, 57–70. MR 2197137
(2007f:60038), 10.1007/s0044000404143
 14.
K.
Bruce Erickson and Ross
A. Maller, Finiteness of integrals of functions of Lévy
processes, Proc. Lond. Math. Soc. (3) 94 (2007),
no. 2, 386–420. MR 2308232
(2008g:60140), 10.1112/plms/pdl011
 15.
William
Feller, On regular variation and local limit theorems, Proc.
Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif.,
1965/66) Univ. California Press, Berkeley, Calif., 1967,
pp. 373–388. MR 0219117
(36 #2200)
 16.
William
Feller, An introduction to probability theory and its applications.
Vol. II., Second edition, John Wiley & Sons, Inc., New
YorkLondonSydney, 1971. MR 0270403
(42 #5292)
 17.
I.
I. Gikhman and A.
V. Skorokhod, Teoriya sluchainykh protsessov. Tom III, Izdat.
“Nauka”, Moscow, 1975 (Russian). Teoriya Veroyatnostei i
Matematicheskaya Statistika. [Monographs in Probability Theory and
Mathematical Statistics]. MR 0651014
(58 #31323a)
 18.
Evarist
Giné, Friedrich
Götze, and David
M. Mason, When is the Student 𝑡statistic asymptotically
standard normal?, Ann. Probab. 25 (1997), no. 3,
1514–1531. MR 1457629
(98j:60033), 10.1214/aop/1024404523
 19.
Evarist
Giné and David
M. Mason, On the LIL for selfnormalized sums of IID random
variables, J. Theoret. Probab. 11 (1998), no. 2,
351–370. MR 1622575
(99e:60082), 10.1023/A:1022675620729
 20.
Charles
M. Goldie and Ross
A. Maller, Generalized densities of order statistics, Statist.
Neerlandica 53 (1999), no. 2, 222–246. MR 1708011
(2000f:62118), 10.1111/14679574.00107
 21.
Philip
S. Griffin, Tightness of the Student 𝑡statistic,
Electron. Comm. Probab. 7 (2002), 181–190
(electronic). MR
1937903 (2003i:60037), 10.1214/ECP.v71059
 22.
P.
S. Griffin and R.
A. Maller, On the rate of growth of the overshoot and the maximum
partial sum, Adv. in Appl. Probab. 30 (1998),
no. 1, 181–196. MR 1618833
(99c:60149), 10.1239/aap/1035227999
 23.
P.
S. Griffin and R.
A. Maller, On compactness properties of the exit position of a
random walk from an interval, Proc. London Math. Soc. (3)
78 (1999), no. 2, 459–480. MR 1665250
(2000e:60147), 10.1112/S0024611599001793
 24.
P.
S. Griffin and R.
A. Maller, Dominance of the sum over the maximum and some new
classes of stochastic compactness, Perplexing problems in probability,
Progr. Probab., vol. 44, Birkhäuser Boston, Boston, MA, 1999,
pp. 219–245. MR 1703134
(2000k:60035)
 25.
Philip
S. Griffin and David
M. Mason, On the asymptotic normality of selfnormalized sums,
Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 3,
597–610. MR 1094756
(92d:60029), 10.1017/S0305004100070018
 26.
Allan
Gut, GnedenkoRaikov’s theorem, central limit theory, and the
weak law of large numbers, Statist. Probab. Lett. 76
(2006), no. 17, 1935–1939. MR 2271190
(2007k:60066), 10.1016/j.spl.2006.04.042
 27.
Olav
Kallenberg, Foundations of modern probability, 2nd ed.,
Probability and its Applications (New York), SpringerVerlag, New York,
2002. MR
1876169 (2002m:60002)
 28.
Harry
Kesten and R.
A. Maller, Ratios of trimmed sums and order statistics, Ann.
Probab. 20 (1992), no. 4, 1805–1842. MR 1188043
(94a:60045)
 29.
Torgny
Lindvall, Weak convergence of probability measures and random
functions in the function space 𝐷(0,∞), J. Appl.
Probability 10 (1973), 109–121. MR 0362429
(50 #14870)
 30.
B.
F. Logan, C.
L. Mallows, S.
O. Rice, and L.
A. Shepp, Limit distributions of selfnormalized sums, Ann.
Probability 1 (1973), 788–809. MR 0362449
(50 #14890)
 31.
Madan, D.B. and Seneta, E. (1990) The Variance Gamma (V.G.) model for share market returns. J. Business, 63, 511524.
 32.
R.
A. Maller, Some properties of stochastic compactness, J.
Austral. Math. Soc. Ser. A 30 (1980/81), no. 3,
264–277. MR
614077 (82h:60043)
 33.
R.
A. Maller, A theorem on products of random variables, with
application to regression, Austral. J. Statist. 23
(1981), no. 2, 177–185. MR 636133
(82m:60032)
 34.
Ross
Maller and David
M. Mason, Convergence in distribution of Lévy processes at
small times with selfnormalization, Acta Sci. Math. (Szeged)
74 (2008), no. 12, 315–347. MR 2431109
(2010e:60054)
 35.
David
M. Mason, The asymptotic distribution of selfnormalized triangular
arrays, J. Theoret. Probab. 18 (2005), no. 4,
853–870. MR 2289935
(2008m:60035), 10.1007/s109590057529z
 36.
David
M. Mason and Joel
Zinn, When does a randomly weighted selfnormalized sum converge in
distribution?, Electron. Comm. Probab. 10 (2005),
70–81 (electronic). MR 2133894
(2005m:60045)
 37.
William
E. Pruitt, The growth of random walks and Lévy
processes, Ann. Probab. 9 (1981), no. 6,
948–956. MR
632968 (84h:60063)
 38.
Raikov, D.A., (1938) On a connection between the central limit theorem in the theory of probability and the law of large numbers. Izvestiya Akad. Nauk SSSR Ser. Mat., 323338.
 39.
Keniti
Sato, Lévy processes and infinitely divisible
distributions, Cambridge Studies in Advanced Mathematics,
vol. 68, Cambridge University Press, Cambridge, 1999. Translated from
the 1990 Japanese original; Revised by the author. MR 1739520
(2003b:60064)
 40.
Jeannette
H. C. Woerner, Inference in Lévytype stochastic volatility
models, Adv. in Appl. Probab. 39 (2007), no. 2,
531–549. MR 2343676
(2009e:62343), 10.1239/aap/1183667622
 1.
 BarndorffNielsen, O.E, Mikosch, T., and Resnick, S.I. (2001) Lévy Processes: Theory and Applications, Birkhäuser, Boston. MR 1833689 (2001m:60004)
 2.
 Beichelt, F. (2006) Stochastic Processes in Science, Engineering and Finance, CRC Press, Boca Raton, FL. MR 2207217
 3.
 Bertoin, J. Lévy Processes. (1996) Cambridge University Press, Cambridge. MR 1406564 (98e:60117)
 4.
 Bertoin, J., Doney, R.A., and Maller, R.A. (2008) Passage of Lévy Processes across Power Law Boundaries at Small Times, Ann. Probab., 36, 160197. MR 2370602 (2009d:60141)
 5.
 Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987) Regular Variation. Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge. MR 898871 (88i:26004)
 6.
 Breymann, W., Dias, A., and Embrechts, P. (2003) Dependence structures for multivariate highfrequency data in finance. Quantitative Finance 3, 116. MR 1972372
 7.
 Blumenthal, R.M. and Getoor, R.K. (1961) Sample functions of stochastic processes with stationary independent increments. J. Math. Mech., 10, 492516. MR 0123362 (23:A689)
 8.
 Buchmann, B., Maller, R.A., and Szimayer, A. (2008) An almost sure functional limit theorem at zero for a Lévy process normed by the square root function, and applications, Prob. Theor. Rel. Fields, 142, 219247. MR 2413271
 9.
 Chistyakov, G.P. and Götze, F. (2004) Limit distributions of studentized sums. Ann. Probab., 32, 2877. MR 2040775 (2005f:60055)
 10.
 de la Peña, V.H., Lai, T.L. and Shao, Q.M. (2009) SelfNormalized Processes: Limit Theory and Statistical Applications. SpringerVerlag, Berlin
 11.
 Doney, R.A. and Maller, R.A. (2002) Stability and attraction to normality for Lévy processes at zero and infinity. J. Theoretical Probab., 15, 751792. MR 1922446 (2003g:60076)
 12.
 Doney, R.A. and Maller, R.A. (2002) Stability of the overshoot for Lévy processes, Ann. Prob., 30, 188212. MR 1894105 (2003d:60090)
 13.
 Doney, R. A. and Maller, R.A. (2005) Passage times of random walks and Lévy processes across power law boundaries. Prob. Theor. Rel. Fields. 133, 5770. MR 2197137 (2007f:60038)
 14.
 Erickson, K.B., and Maller, R.A. (2007) Finiteness of integrals of functions of Lévy processes, Proc. Lond. Math. Soc., 94, 386420. MR 2308232 (2008g:60140)
 15.
 Feller, W. (1966) On regular variation and local limit theorems. In: Proc. Fifth Berkeley Symp. Math. Statist. Prob., 2, 373388. Univ. California Press, Berkeley. MR 0219117 (36:2200)
 16.
 Feller, W. (1971) An Introduction to Probability Theory and its Applications, 2nd Ed., Wiley, NY. MR 0270403 (42:5292)
 17.
 Gikhman, I.I. and Skorokhod, A.V. (1974) The Theory of Random Processes, SpringerVerlag, Berlin, NY. MR 0651014 (58:31323a)
 18.
 Giné, E., Götze, F., and Mason, D.M. (1997) When is the student statistic asymptotically standard normal? Ann. Prob. 25, 15141531. MR 1457629 (98j:60033)
 19.
 Giné, E. and Mason, D.M. (1998) On the LIL for SelfNormalized Sums of IID Random Variables, J. Theoretical Probab., 11, 351370. MR 1622575 (99e:60082)
 20.
 Goldie, C.M. and Maller, R.A. (1998) Generalised densities of order statistics. Statistica Neerlandica, 53, 222246. MR 1708011 (2000f:62118)
 21.
 Griffin, P.S. (2002) Tightness of the Student statistic, Electron. Comm. in Probab. 7, 181190. MR 1937903 (2003i:60037)
 22.
 Griffin, P.S. and Maller, R.A. (1998) On the rate of growth of the overshoot and the maximal partial sum. Adv. Appl. Prob. 30, 116. MR 1618833 (99c:60149)
 23.
 Griffin, P.S. and Maller, R.A. (1999a) On compactness properties of the exit position of a random walk from an interval, Proc. Lond. Math. Soc., 78, 459480. MR 1665250 (2000e:60147)
 24.
 Griffin, P.S. and Maller, R.A. (1999b) Dominance of the sum over the maximum and some new classes of stochastic compactness. Invited Paper, In: Perplexing Problems in Probability, Festschrift in Honor of Harry Kesten, M. Bramson and R. Durrett, Eds., Progress in Probability 44 (Birkhäuser, Boston, 1999), 219246. MR 1703134 (2000k:60035)
 25.
 Griffin, P.S., and Mason, D.M. (1991). On the asymptotic normality of selfnormalized sums, Proc. Cambridge Phil. Soc. 109, 597610. MR 1094756 (92d:60029)
 26.
 Gut, A. (2006) GnedenkoRaikov's theorem, central limit theory, and the weak law of large numbers, Statistics & Prob. Letters, 76, 19351939. MR 2271190 (2007k:60066)
 27.
 Kallenberg, O. (2002) Foundations of Modern Probability, 2nd Ed., Springer. MR 1876169 (2002m:60002)
 28.
 Kesten, H. and Maller, R.A. (1992) Ratios of trimmed sums and order statistics, Ann. Probab., 20, 18051842. MR 1188043 (94a:60045)
 29.
 Lindvall, T. (1973) Weak convergence of probability measures and random functions in the function space . J. Appl, Prob., 10, 109121. MR 0362429 (50:14870)
 30.
 Logan, B.F., Mallows, C.L., Rice, S.O. and Shepp, L. (1973) Limit distributions of selfnormalized sums. Ann. Probab. 1, 788809. MR 0362449 (50:14890)
 31.
 Madan, D.B. and Seneta, E. (1990) The Variance Gamma (V.G.) model for share market returns. J. Business, 63, 511524.
 32.
 Maller, R.A. (1981) Some properties of stochastic compactness. J. Austral. Math. Soc., 30, 264277. MR 614077 (82h:60043)
 33.
 Maller, R.A. (1981) A theorem on products of random variables with application to regression. Austral. J. Statist., 23, 177185. MR 636133 (82m:60032)
 34.
 Maller, R.A. and Mason, D.M. (2008) Convergence in distribution of Lévy processes at small times with selfnormalisation, Acta Sci. Math. (Szeged), 74, 315347. MR 2431109
 35.
 Mason, D.M. (2005) The asymptotic distribution of selfnormalized triangular arrays. J. Theor. Probab., 18, 853870 MR 2289935 (2008m:60035)
 36.
 Mason, D.M. and Zinn, J. (2005) When does a randomly weighted selfnormalized sum converge in distribution? Electronic Comm. Prob., 10, 7081. MR 2133894 (2005m:60045)
 37.
 Pruitt, W.E. (1981) The growth of random walks and Lé vy processes. Ann. Probab. 9, 948956. MR 632968 (84h:60063)
 38.
 Raikov, D.A., (1938) On a connection between the central limit theorem in the theory of probability and the law of large numbers. Izvestiya Akad. Nauk SSSR Ser. Mat., 323338.
 39.
 Sato, K. (1999) Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge. MR 1739520 (2003b:60064)
 40.
 Woerner, J. (2007) Inference in Lévytype stochastic volatility models, Adv. Appl. Prob. 39, 531549. MR 2343676
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
60F05,
60F17,
60G51
Retrieve articles in all journals
with MSC (2000):
60F05,
60F17,
60G51
Additional Information
Ross Maller
Affiliation:
Centre for Mathematical Analysis & School of Finance and Applied Statistics, Australian National University, PO Canberra, ACT, Australia
Email:
Ross.Maller@anu.edu.au
David M. Mason
Affiliation:
Food and Resource Economics, University of Delaware, 206 Townsend Hall, Newark, Delaware 19717
Email:
davidm@Udel.Edu
DOI:
http://dx.doi.org/10.1090/S0002994709050326
Received by editor(s):
June 10, 2008
Received by editor(s) in revised form:
March 3, 2009
Published electronically:
November 18, 2009
Additional Notes:
The first author’s research was partially supported by ARC Grant DP0664603
The second author’s research was partially supported by NSF Grant DMS–0503908.
Article copyright:
© Copyright 2009
American Mathematical Society
