Small-time compactness and convergence behavior of deterministically and self-normalised Lévy processes

Authors:
Ross Maller and David M. Mason

Journal:
Trans. Amer. Math. Soc. **362** (2010), 2205-2248

MSC (2000):
Primary 60F05, 60F17, 60G51

DOI:
https://doi.org/10.1090/S0002-9947-09-05032-6

Published electronically:
November 18, 2009

MathSciNet review:
2574893

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a Lévy process with quadratic variation process , , where denotes the jump process of . We give stability and compactness results, as , for the convergence both of the deterministically normed (and possibly centered) processes and , as well as theorems concerning the ``self-normalised'' process . Thus, we consider the stochastic compactness and convergence in distribution of the 2-vector , for deterministic functions and , as , possibly through a subsequence; and the stochastic compactness and convergence in distribution of , possibly to a nonzero constant (for stability), as , again possibly through a subsequence.

As a main application it is shown that , a standard normal random variable, as , if and only if , as , for some nonstochastic function ; thus, is in the domain of attraction of the normal distribution, as , with or without centering constants being necessary (these being equivalent).

We cite simple analytic equivalences for the above properties, in terms of the Lévy measure of . Functional versions of the convergences are also given.

**1.**Ole E. Barndorff-Nielsen, Thomas Mikosch, and Sidney I. Resnick (eds.),*Lévy processes*, Birkhäuser Boston, Inc., Boston, MA, 2001. Theory and applications. MR**1833689****2.**Frank Beichelt,*Stochastic processes in science, engineering and finance*, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR**2207217****3.**Jean Bertoin,*Lévy processes*, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. MR**1406564****4.**J. Bertoin, R. A. Doney, and R. A. Maller,*Passage of Lévy processes across power law boundaries at small times*, Ann. Probab.**36**(2008), no. 1, 160–197. MR**2370602**, https://doi.org/10.1214/009117907000000097**5.**N. H. Bingham, C. M. Goldie, and J. L. Teugels,*Regular variation*, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987. MR**898871****6.**Wolfgang Breymann, Alexandra Dias, and Paul Embrechts,*Dependence structures for multivariate high-frequency data in finance*, Selected Proceedings from Quantitative Methods in Finance, 2002 (Cairns/Sydney), 2003, pp. 1–14. MR**1972372**, https://doi.org/10.1088/1469-7688/3/1/301**7.**R. M. Blumenthal and R. K. Getoor,*Sample functions of stochastic processes with stationary independent increments*, J. Math. Mech.**10**(1961), 493–516. MR**0123362****8.**Boris Buchmann, Ross Maller, and Alex Szimayer,*An almost sure functional limit theorem at zero for a class of Lévy processes normed by the square root function, and applications*, Probab. Theory Related Fields**142**(2008), no. 1-2, 219–247. MR**2413271**, https://doi.org/10.1007/s00440-007-0103-0**9.**G. P. Chistyakov and F. Götze,*Limit distributions of Studentized means*, Ann. Probab.**32**(2004), no. 1A, 28–77. MR**2040775**, https://doi.org/10.1214/aop/1078415828**10.**de la Peña, V.H., Lai, T.L. and Shao, Q.-M. (2009)*Self-Normalized Processes: Limit Theory and Statistical Applications.*Springer-Verlag, Berlin**11.**R. A. Doney and R. A. Maller,*Stability and attraction to normality for Lévy processes at zero and at infinity*, J. Theoret. Probab.**15**(2002), no. 3, 751–792. MR**1922446**, https://doi.org/10.1023/A:1016228101053**12.**R. A. Doney and R. A. Maller,*Stability of the overshoot for Lévy processes*, Ann. Probab.**30**(2002), no. 1, 188–212. MR**1894105**, https://doi.org/10.1214/aop/1020107765**13.**R. A. Doney and R. A. Maller,*Passage times of random walks and Lévy processes across power law boundaries*, Probab. Theory Related Fields**133**(2005), no. 1, 57–70. MR**2197137**, https://doi.org/10.1007/s00440-004-0414-3**14.**K. Bruce Erickson and Ross A. Maller,*Finiteness of integrals of functions of Lévy processes*, Proc. Lond. Math. Soc. (3)**94**(2007), no. 2, 386–420. MR**2308232**, https://doi.org/10.1112/plms/pdl011**15.**William Feller,*On regular variation and local limit theorems*, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 373–388. MR**0219117****16.**William Feller,*An introduction to probability theory and its applications. Vol. II.*, Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR**0270403****17.**I. I. Gikhman and A. V. Skorokhod,*\cyr Teoriya sluchaĭnykh protsessov. Tom III.*, Izdat. “Nauka”, Moscow, 1975 (Russian). \cyr Teoriya Veroyatnosteĭ i Matematicheskaya Statistika. [Monographs in Probability Theory and Mathematical Statistics]. MR**0651014**

I. I. Gihman and A. V. Skorohod,*The theory of stochastic processes. III*, Springer-Verlag, Berlin-New York, 1979. Translated from the Russian by Samuel Kotz; With an appendix containing corrections to Volumes I and II; Grundlehren der Mathematischen Wissenschaften, 232. MR**0651015****18.**Evarist Giné, Friedrich Götze, and David M. Mason,*When is the Student 𝑡-statistic asymptotically standard normal?*, Ann. Probab.**25**(1997), no. 3, 1514–1531. MR**1457629**, https://doi.org/10.1214/aop/1024404523**19.**Evarist Giné and David M. Mason,*On the LIL for self-normalized sums of IID random variables*, J. Theoret. Probab.**11**(1998), no. 2, 351–370. MR**1622575**, https://doi.org/10.1023/A:1022675620729**20.**Charles M. Goldie and Ross A. Maller,*Generalized densities of order statistics*, Statist. Neerlandica**53**(1999), no. 2, 222–246. MR**1708011**, https://doi.org/10.1111/1467-9574.00107**21.**Philip S. Griffin,*Tightness of the Student 𝑡-statistic*, Electron. Comm. Probab.**7**(2002), 181–190. MR**1937903**, https://doi.org/10.1214/ECP.v7-1059**22.**P. S. Griffin and R. A. Maller,*On the rate of growth of the overshoot and the maximum partial sum*, Adv. in Appl. Probab.**30**(1998), no. 1, 181–196. MR**1618833**, https://doi.org/10.1239/aap/1035227999**23.**P. S. Griffin and R. A. Maller,*On compactness properties of the exit position of a random walk from an interval*, Proc. London Math. Soc. (3)**78**(1999), no. 2, 459–480. MR**1665250**, https://doi.org/10.1112/S0024611599001793**24.**P. S. Griffin and R. A. Maller,*Dominance of the sum over the maximum and some new classes of stochastic compactness*, Perplexing problems in probability, Progr. Probab., vol. 44, Birkhäuser Boston, Boston, MA, 1999, pp. 219–245. MR**1703134****25.**Philip S. Griffin and David M. Mason,*On the asymptotic normality of self-normalized sums*, Math. Proc. Cambridge Philos. Soc.**109**(1991), no. 3, 597–610. MR**1094756**, https://doi.org/10.1017/S0305004100070018**26.**Allan Gut,*Gnedenko-Raikov’s theorem, central limit theory, and the weak law of large numbers*, Statist. Probab. Lett.**76**(2006), no. 17, 1935–1939. MR**2271190**, https://doi.org/10.1016/j.spl.2006.04.042**27.**Olav Kallenberg,*Foundations of modern probability*, 2nd ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002. MR**1876169****28.**Harry Kesten and R. A. Maller,*Ratios of trimmed sums and order statistics*, Ann. Probab.**20**(1992), no. 4, 1805–1842. MR**1188043****29.**Torgny Lindvall,*Weak convergence of probability measures and random functions in the function space 𝐷(0,∞)*, J. Appl. Probability**10**(1973), 109–121. MR**0362429****30.**B. F. Logan, C. L. Mallows, S. O. Rice, and L. A. Shepp,*Limit distributions of self-normalized sums*, Ann. Probability**1**(1973), 788–809. MR**0362449****31.**Madan, D.B. and Seneta, E. (1990) The Variance Gamma (V.G.) model for share market returns. J. Business, 63, 511-524.**32.**R. A. Maller,*Some properties of stochastic compactness*, J. Austral. Math. Soc. Ser. A**30**(1980/81), no. 3, 264–277. MR**614077****33.**R. A. Maller,*A theorem on products of random variables, with application to regression*, Austral. J. Statist.**23**(1981), no. 2, 177–185. MR**636133****34.**Ross Maller and David M. Mason,*Convergence in distribution of Lévy processes at small times with self-normalization*, Acta Sci. Math. (Szeged)**74**(2008), no. 1-2, 315–347. MR**2431109****35.**David M. Mason,*The asymptotic distribution of self-normalized triangular arrays*, J. Theoret. Probab.**18**(2005), no. 4, 853–870. MR**2289935**, https://doi.org/10.1007/s10959-005-7529-z**36.**David M. Mason and Joel Zinn,*When does a randomly weighted self-normalized sum converge in distribution?*, Electron. Comm. Probab.**10**(2005), 70–81. MR**2133894****37.**William E. Pruitt,*The growth of random walks and Lévy processes*, Ann. Probab.**9**(1981), no. 6, 948–956. MR**632968****38.**Raikov, D.A., (1938) On a connection between the central limit theorem in the theory of probability and the law of large numbers. Izvestiya Akad. Nauk SSSR Ser. Mat., 323-338.**39.**Ken-iti Sato,*Lévy processes and infinitely divisible distributions*, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. MR**1739520****40.**Jeannette H. C. Woerner,*Inference in Lévy-type stochastic volatility models*, Adv. in Appl. Probab.**39**(2007), no. 2, 531–549. MR**2343676**, https://doi.org/10.1239/aap/1183667622

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
60F05,
60F17,
60G51

Retrieve articles in all journals with MSC (2000): 60F05, 60F17, 60G51

Additional Information

**Ross Maller**

Affiliation:
Centre for Mathematical Analysis & School of Finance and Applied Statistics, Australian National University, PO Canberra, ACT, Australia

Email:
Ross.Maller@anu.edu.au

**David M. Mason**

Affiliation:
Food and Resource Economics, University of Delaware, 206 Townsend Hall, Newark, Delaware 19717

Email:
davidm@Udel.Edu

DOI:
https://doi.org/10.1090/S0002-9947-09-05032-6

Received by editor(s):
June 10, 2008

Received by editor(s) in revised form:
March 3, 2009

Published electronically:
November 18, 2009

Additional Notes:
The first author’s research was partially supported by ARC Grant DP0664603

The second author’s research was partially supported by NSF Grant DMS–0503908.

Article copyright:
© Copyright 2009
American Mathematical Society