Conductivity interface problems. Part I: Small perturbations of an interface

Authors:
Habib Ammari, Hyeonbae Kang, Mikyoung Lim and Habib Zribi

Journal:
Trans. Amer. Math. Soc. **362** (2010), 2435-2449

MSC (2000):
Primary 35B30

Published electronically:
December 16, 2009

MathSciNet review:
2584606

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We derive high-order terms in the asymptotic expansions of boundary perturbations of steady-state voltage potentials resulting from small perturbations of the shape of a conductivity inclusion with -boundary. Our derivation is rigorous and based on layer potential techniques. The asymptotic expansion in this paper is valid for -perturbations and inclusions with extreme conductivities. It extends those already derived for small volume conductivity inclusions and leads us to very effective algorithms for determining lower-order Fourier coefficients of the shape perturbation of the inclusion based on boundary measurements. We perform some numerical experiments using the algorithm to test its effectiveness.

**1.**Habib Ammari and Hyeonbae Kang,*High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter*, SIAM J. Math. Anal.**34**(2003), no. 5, 1152–1166 (electronic). MR**2001663**, 10.1137/S0036141001399234**2.**Habib Ammari and Hyeonbae Kang,*Reconstruction of small inhomogeneities from boundary measurements*, Lecture Notes in Mathematics, vol. 1846, Springer-Verlag, Berlin, 2004. MR**2168949****3.**Habib Ammari and Hyeonbae Kang,*Polarization and moment tensors*, Applied Mathematical Sciences, vol. 162, Springer, New York, 2007. With applications to inverse problems and effective medium theory. MR**2327884****4.**Yves Capdeboscq and Michael S. Vogelius,*A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction*, M2AN Math. Model. Numer. Anal.**37**(2003), no. 1, 159–173. MR**1972656**, 10.1051/m2an:2003014**5.**D. J. Cedio-Fengya, S. Moskow, and M. S. Vogelius,*Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction*, Inverse Problems**14**(1998), no. 3, 553–595. MR**1629995**, 10.1088/0266-5611/14/3/011**6.**Tony F. Chan and Xue-Cheng Tai,*Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients*, J. Comput. Phys.**193**(2004), no. 1, 40–66. MR**2022688**, 10.1016/j.jcp.2003.08.003**7.**R. R. Coifman, A. McIntosh, and Y. Meyer,*L’intégrale de Cauchy définit un opérateur borné sur 𝐿² pour les courbes lipschitziennes*, Ann. of Math. (2)**116**(1982), no. 2, 361–387 (French). MR**672839**, 10.2307/2007065**8.**E. B. Fabes, M. Jodeit Jr., and N. M. Rivière,*Potential techniques for boundary value problems on 𝐶¹-domains*, Acta Math.**141**(1978), no. 3-4, 165–186. MR**501367**, 10.1007/BF02545747**9.**Eugene Fabes, Hyeonbae Kang, and Jin Keun Seo,*Inverse conductivity problem with one measurement: error estimates and approximate identification for perturbed disks*, SIAM J. Math. Anal.**30**(1999), no. 4, 699–720 (electronic). MR**1684722**, 10.1137/S0036141097324958**10.**Avner Friedman and Michael Vogelius,*Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence*, Arch. Rational Mech. Anal.**105**(1989), no. 4, 299–326. MR**973245**, 10.1007/BF00281494**11.**Frank Hettlich and William Rundell,*The determination of a discontinuity in a conductivity from a single boundary measurement*, Inverse Problems**14**(1998), no. 1, 67–82. MR**1607628**, 10.1088/0266-5611/14/1/008**12.**Kazufumi Ito, Karl Kunisch, and Zhilin Li,*Level-set function approach to an inverse interface problem*, Inverse Problems**17**(2001), no. 5, 1225–1242. MR**1862188**, 10.1088/0266-5611/17/5/301**13.**Hyeonbae Kang and Jin Keun Seo,*The layer potential technique for the inverse conductivity problem*, Inverse Problems**12**(1996), no. 3, 267–278. MR**1391539**, 10.1088/0266-5611/12/3/007**14.**Hyeonbae Kang and Jin Keun Seo,*On stability of a transmission problem*, J. Korean Math. Soc.**34**(1997), no. 3, 695–706. MR**1466611****15.**Hyeonbae Kang and Jin Keun Seo,*Recent progress in the inverse conductivity problem with single measurement*, Inverse problems and related topics (Kobe, 1998) Chapman & Hall/CRC Res. Notes Math., vol. 419, Chapman & Hall/CRC, Boca Raton, FL, 2000, pp. 69–80. MR**1761339****16.**Ohin Kwon, Jin Keun Seo, and Jeong-Rock Yoon,*A real-time algorithm for the location search of discontinuous conductivities with one measurement*, Comm. Pure Appl. Math.**55**(2002), no. 1, 1–29. MR**1857878**, 10.1002/cpa.3009**17.**Carlos F. Tolmasky and Andreas Wiegmann,*Recovery of small perturbations of an interface for an elliptic inverse problem via linearization*, Inverse Problems**15**(1999), no. 2, 465–487. MR**1684468**, 10.1088/0266-5611/15/2/008**18.**Gregory Verchota,*Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains*, J. Funct. Anal.**59**(1984), no. 3, 572–611. MR**769382**, 10.1016/0022-1236(84)90066-1**19.**Michael S. Vogelius and Darko Volkov,*Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter*, M2AN Math. Model. Numer. Anal.**34**(2000), no. 4, 723–748. MR**1784483**, 10.1051/m2an:2000101

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
35B30

Retrieve articles in all journals with MSC (2000): 35B30

Additional Information

**Habib Ammari**

Affiliation:
Centre de Mathématiques Appliquées, CNRS UMR 7641 and Ecole Polytechnique, 91128 Palaiseau Cedex, France

Email:
ammari@cmapx.polytechnique.fr

**Hyeonbae Kang**

Affiliation:
Department of Mathematical Sciences and RIM, Seoul National University, Seoul 151-747, Korea

Address at time of publication:
Department of Mathematics, Inha University, Incheon 402-751, Korea

Email:
hkang@math.snu.ac.kr, hbkang@inha.ac.kr

**Mikyoung Lim**

Affiliation:
Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523

Address at time of publication:
Department of Mathematical Sciences, Korean Advanced Institute of Science and Technology, 335 Gwahangno (373-1 Gueseong-dong), Yuseong-gu, Daejeon 305-701, Korea

Email:
lim@math.colostate.edu, mklim@kaist.ac.kr

**Habib Zribi**

Affiliation:
Centre de Mathématiques Appliquées, CNRS UMR 7641 and Ecole Polytechnique, 91128 Palaiseau Cedex, France

Address at time of publication:
Department of Mathematical Sciences, Korean Advanced Institute of Science and Technology, 335 Gwahangno (373-1 Gueseong-dong), Yuseong-gu, Daejeon 305-701, Korea

Email:
zribi@cmapx.polytechnique.fr

DOI:
https://doi.org/10.1090/S0002-9947-09-04842-9

Keywords:
Small perturbations,
interface problem,
full asymptotic expansions,
boundary integral method

Received by editor(s):
January 13, 2006

Received by editor(s) in revised form:
January 27, 2008

Published electronically:
December 16, 2009

Article copyright:
© Copyright 2009
American Mathematical Society