Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The spectral sequence of an equivariant chain complex and homology with local coefficients


Authors: Stefan Papadima and Alexander I. Suciu
Journal: Trans. Amer. Math. Soc. 362 (2010), 2685-2721
MSC (2010): Primary 55N25, 55T99; Secondary 20J05, 57M05
DOI: https://doi.org/10.1090/S0002-9947-09-05041-7
Published electronically: December 15, 2009
MathSciNet review: 2584616
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the spectral sequence associated to the filtration by powers of the augmentation ideal on the (twisted) equivariant chain complex of the universal cover of a connected CW-complex $ X$. In the process, we identify the $ d^1$ differential in terms of the coalgebra structure of $ H_*(X,\Bbbk)$ and the $ \Bbbk\pi_1(X)$-module structure on the twisting coefficients. In particular, this recovers in dual form a result of Reznikov on the mod $ p$ cohomology of cyclic $ p$-covers of aspherical complexes. This approach provides information on the homology of all Galois covers of $ X$. It also yields computable upper bounds on the ranks of the cohomology groups of $ X$, with coefficients in a prime-power order, rank one local system. When $ X$ admits a minimal cell decomposition, we relate the linearization of the equivariant cochain complex of the universal abelian cover to the Aomoto complex, arising from the cup-product structure of $ H^*(X,\Bbbk)$, thereby generalizing a result of Cohen and Orlik.


References [Enhancements On Off] (What's this?)

  • 1. J. Birman, Braids, links and mapping class groups, Ann. of Math. Studies, vol. 82, Princeton Univ. Press, Princeton, NJ, 1975. MR 0375281
  • 2. H. Cartan, S. Eilenberg, Homological algebra, Princeton University Press, Princeton, NJ, 1956. MR 0077480
  • 3. D. C. Cohen, On the cohomology of discriminantal arrangements and Orlik-Solomon algebras, in: Arrangements-Tokyo 1998, pp. 27-49, Adv. Stud. Pure Math., vol. 27, Kinokuniya, Tokyo, 2000. MR 1796892 (2001m:32059)
  • 4. D. C. Cohen, P. Orlik, Arrangements and local systems, Math. Res. Lett. 7 (2000), no. 2-3, 299-316. MR 1764324 (2001i:57040)
  • 5. D. C. Cohen, A. I. Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Phil. Soc. 127 (1999), no. 1, 33-53. MR 1692519 (2000m:32036)
  • 6. G. Denham, The Orlik-Solomon complex and Milnor fibre homology, Topology Appl. 118 (2002), no. 1-2, 45-63. MR 1877715 (2002k:32048)
  • 7. A. Dimca, S. Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements, Annals of Math. 158 (2003), no. 2, 473-507. MR 2018927 (2005a:32028)
  • 8. A. Dimca, S. Papadima, Equivariant chain complexes, twisted homology and relative minimality of arrangements, Ann. Sci. École Norm. Sup. 37 (2004), no. 3, 449-467. MR 2060483 (2005c:55028)
  • 9. A. Dimca, S. Papadima, A. Suciu, Alexander polynomials: Essential variables and multiplicities, Int. Math. Res. Notices 2008, no. 3, Art. ID rnm119, 36 pp. MR 2416998 (2009i:32036)
  • 10. S. Eilenberg, Homology of spaces with operators. I. Trans. Amer. Math. Soc. 61 (1947), 378-417. MR 0021313
  • 11. M. S. Farber, Sharpness of the Novikov inequalities, Funktsional. Anal. i Prilozhen. 19 (1985), no. 1, 49-59. MR 0783706 (86g:58029)
  • 12. M. Farber, Topology of closed one-forms, Math. Surveys Monogr., vol. 108, Amer. Math. Soc., Providence, RI, 2004. MR 2034601 (2005c:58023)
  • 13. R. H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. 57 (1953), 547-560. MR 0053938
  • 14. L. Grünenfelder, Lower central series, augmentation quotients and homology of groups, Comment. Math. Helv. 55 (1980), no. 2, 159-177. MR 0576599 (82a:20044)
  • 15. G. Higman, The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231-248. MR 0002137
  • 16. J. Hillman, A link with Alexander module free which is not a homology boundary link, J. Pure Appl. Algebra 20 (1981), no. 1, 1-5. MR 0596149 (82d:57001)
  • 17. P. Hilton, U. Stammbach, A course in homological algebra, Second edition, Graduate Texts in Math., vol. 4, Springer-Verlag, New York, 1997. MR 1438546 (97k:18001)
  • 18. J. Howie, H. Short, The band-sum problem, J. London Math. Soc. (2) 31 (1985), no. 3, 571-576. MR 0812788 (87c:57004)
  • 19. A. Măcinic, S. Papadima, On the monodromy action on Milnor fibers of graphic arrangements, Topology Appl. 156 (2009), no. 4, 761-774. MR 2492960
  • 20. H. Matsumura, Commutative algebra, Second edition, Math. Lecture Note Ser., vol. 56, Benjamin/Cummings, Reading, MA, 1980. MR 0575344 (82i:13003)
  • 21. J. Milnor, Infinite cyclic coverings, in: Conference on the Topology of Manifolds (Michigan State Univ., 1967), pp. 115-133, Prindle, Weber & Schmidt, Boston, MA, 1968. MR 0242163 (39:3497)
  • 22. S. P. Novikov, Bloch homology, critical points of functions, and closed $ 1$-forms, Dokl. Akad. Nauk. SSSR 287 (1986), 1321-1324. MR 0838822 (87k:58052)
  • 23. S. Papadima, A. I. Suciu, Higher homotopy groups of complements of hyperplane arrangements, Advances in Math. 165 (2002), no. 1, 71-100. MR 1880322 (2003b:55019)
  • 24. S. Papadima, A. I. Suciu, Toric complexes and Artin kernels, Advances in Math. 220 (2009), no. 2, 441-477. MR 2466422
  • 25. S. Papadima, A. I. Suciu, Algebraic monodromy and obstructions to formality, arxiv:0901.0105, to appear in Forum Math (2010).
  • 26. D. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411-418. MR 0231919
  • 27. A. Reznikov, Three-manifolds class field theory (homology of coverings for a nonvirtually $ b_1$-positive manifold), Selecta Math. (N.S.) 3 (1997), no. 3, 361-399. MR 1481134 (99b:57041)
  • 28. D. Rolfsen, Knots and links, Math. Lecture Series, vol. 7, Publish or Perish, 1976. MR 0515288
  • 29. H. Seifert, Über das Geschlecht von Knoten, Math. Ann. 110 (1935), no. 1, 571-592. MR 1512955
  • 30. J.-P. Serre, Algèbre locale. Multiplicités, Third edition, Lecture Notes in Math., vol. 11, Springer-Verlag, Berlin, 1975. MR 0201468
  • 31. E. H. Spanier, Algebraic topology, McGraw-Hill, New York-Toronto-London, 1966. MR 0210112
  • 32. J. R. Stallings, Quotients of the powers of the augmentation ideal in a group ring, in: Knots, groups, and $ 3$-manifolds, pp. 101-118, Ann. of Math. Studies, no. 84, Princeton Univ. Press, Princeton, N.J., 1975. MR 0379685 (52:590)
  • 33. S. Wanna, A spectral sequence for group presentations with applications to links, Trans. Amer. Math. Soc. 261 (1980), no. 1, 271-285. MR 0576875 (81i:57003)
  • 34. J. H. C. Whitehead, Combinatorial homotopy (I and II), Bull. Amer. Math. Soc. 55 (1949), 213-245, 453-496. MR 0030759 (11:48b); MR 0030760 (11:48c)
  • 35. M. Yoshinaga, The chamber basis of the Orlik-Solomon algebra and Aomoto complex, Arkiv för Matematik, 47 (2009), no. 2, 393-407. MR 2529708

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 55N25, 55T99, 20J05, 57M05

Retrieve articles in all journals with MSC (2010): 55N25, 55T99, 20J05, 57M05


Additional Information

Stefan Papadima
Affiliation: Institute of Mathematics Simion Stoilow, P.O. Box 1-764, RO-014700 Bucharest, Romania
Email: Stefan.Papadima@imar.ro

Alexander I. Suciu
Affiliation: Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
Email: a.suciu@neu.edu

DOI: https://doi.org/10.1090/S0002-9947-09-05041-7
Keywords: Equivariant chain complex, $I$-adic filtration, spectral sequence, twisted homology, minimal cell complex, Aomoto complex, Betti numbers
Received by editor(s): September 29, 2008
Published electronically: December 15, 2009
Additional Notes: The first author was partially supported by the CEEX Programme of the Romanian Ministry of Education and Research, contract 2-CEx 06-11-20/2006
The second author was partially supported by NSF grant DMS-0311142
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society