Graded identities of matrix algebras and the universal graded algebra
Authors:
Eli Aljadeff, Darrell Haile and Michael Natapov
Journal:
Trans. Amer. Math. Soc. 362 (2010), 31253147
MSC (2000):
Primary 16W50, 16R10, 16R50; Secondary 16S35, 16K20
Published electronically:
January 7, 2010
MathSciNet review:
2592949
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider fine group gradings on the algebra of by matrices over the complex numbers and the corresponding graded polynomial identities. Given a group and a fine grading on , we show that the ideal of graded identities is generated by a special type of identity, and, as a consequence, we solve the corresponding Specht problem for this case. Next we construct a universal algebra (depending on the group and the grading) in two different ways: one by means of polynomial identities and the other one by means of a generic twococycle (this parallels the classical constructions in the nongraded case). We show that a suitable central localization of is Azumaya over its center and moreover, its homomorphic images are precisely the graded forms of . Finally, we consider the ring of central quotients of which is a central simple algebra over the field of quotients of the center of . Using earlier results of the authors we show that this is a division algebra if and only if the group is one of a very explicit (and short) list of nilpotent groups. It follows that for groups not on this list, one can find a nonidentity graded polynomial such that its power is a graded identity. We illustrate this phenomenon with an explicit example.
 1.
Eli
Aljadeff and Darrell
Haile, Division algebras with a projective basis, Israel J.
Math. 121 (2001), 173–198. MR 1818387
(2002g:16027), 10.1007/BF02802503
 2.
Eli
Aljadeff, Darrell
Haile, and Michael
Natapov, Projective bases of division algebras and groups of
central type, Israel J. Math. 146 (2005),
317–335. MR 2151606
(2006c:20005), 10.1007/BF02773539
 3.
Eli
Aljadeff, Darrell
Haile, and Michael
Natapov, On fine gradings on central simple algebras, Groups,
rings and group rings, Lect. Notes Pure Appl. Math., vol. 248,
Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 1–9. MR 2226177
(2007m:16030), 10.1201/9781420010961.ch1
 4.
E. Aljadeff, C. Kassel,
Polynomial identities and noncommutative versal torsors, arXiv:0708.4108, Adv. Math. (2008), doi:10.1016/j.aim.2008.03.014.
 5.
E. Aljadeff, M. Natapov,
On the universal graded central simple algebra, Actas del XVI Coloquio Latinoamericano de Álgebra (Colonia, Uruguay, 2005), 115130, Revista Matemática Iberoamericana, Madrid, 2007.
 6.
Eli
Aljadeff and Jack
Sonn, Projective Schur algebras of nilpotent type are Brauer
equivalent to radical algebras, J. Algebra 220
(1999), no. 2, 401–414. MR 1717348
(2000i:16035), 10.1006/jabr.1999.7860
 7.
Yuri
Bahturin and Vesselin
Drensky, Graded polynomial identities of matrices, Linear
Algebra Appl. 357 (2002), 15–34. MR 1935223
(2003k:16034), 10.1016/S00243795(02)003567
 8.
Yu.
A. Bahturin, S.
K. Sehgal, and M.
V. Zaicev, Group gradings on associative algebras, J. Algebra
241 (2001), no. 2, 677–698. MR 1843319
(2002h:16067), 10.1006/jabr.2000.8643
 9.
Yu.
A. Bahturin and M.
V. Zaicev, Group gradings on matrix algebras, Canad. Math.
Bull. 45 (2002), no. 4, 499–508. Dedicated to
Robert V. Moody. MR 1941224
(2003h:16046), 10.4153/CMB2002051x
 10.
Frank
DeMeyer and Edward
Ingraham, Separable algebras over commutative rings, Lecture
Notes in Mathematics, Vol. 181, SpringerVerlag, BerlinNew York, 1971. MR 0280479
(43 #6199)
 11.
Frank
R. DeMeyer and Gerald
J. Janusz, Finite groups with an irreducible representation of
large degree, Math. Z. 108 (1969), 145–153. MR 0237629
(38 #5910)
 12.
Pavel
Etingof and Shlomo
Gelaki, A method of construction of finitedimensional triangular
semisimple Hopf algebras, Math. Res. Lett. 5 (1998),
no. 4, 551–561. MR 1653340
(99i:16069), 10.4310/MRL.1998.v5.n4.a12
 13.
Pavel
Etingof and Shlomo
Gelaki, The classification of triangular semisimple and
cosemisimple Hopf algebras over an algebraically closed field,
Internat. Math. Res. Notices 5 (2000), 223–234. MR 1747109
(2001h:16039), 10.1155/S1073792800000131
 14.
Robert
B. Howlett and I.
Martin Isaacs, On groups of central type, Math. Z.
179 (1982), no. 4, 555–569. MR 652860
(83j:20020), 10.1007/BF01215066
 15.
I.
Martin Isaacs, Character theory of finite groups, Dover
Publications, Inc., New York, 1994. Corrected reprint of the 1976 original
[Academic Press, New York; MR0460423 (57 #417)]. MR
1280461
 16.
Gregory
Karpilovsky, Group representations. Vol. 2, NorthHolland
Mathematics Studies, vol. 177, NorthHolland Publishing Co.,
Amsterdam, 1993. MR 1215935
(94f:20001)
 17.
Michael
Natapov, Projective bases of division algebras and groups of
central type. II, Israel J. Math. 164 (2008),
61–73. MR
2391140 (2009a:16032), 10.1007/s1185600800207
 18.
I.
Reiner, Maximal orders, London Mathematical Society
Monographs. New Series, vol. 28, The Clarendon Press, Oxford
University Press, Oxford, 2003. Corrected reprint of the 1975 original;
With a foreword by M. J. Taylor. MR 1972204
(2004c:16026)
 1.
 E. Aljadeff, D. Haile,
Division algebras with a projective basis, Israel J. Math. 121 (2001) 173198. MR 1818387 (2002g:16027)
 2.
 E. Aljadeff, D. Haile, M. Natapov,
Projective bases of division algebras and groups of central type, Israel J. Math. 146 (2005) 317335. MR 2151606 (2006c:20005)
 3.
 E. Aljadeff, D. Haile, M. Natapov,
On fine gradings on central simple algebras, Groups, Rings and Group Rings, 19, Lecture Notes in Pure and Appl. Math., 248, Taylor and Francis, New York, 2006. MR 2226177 (2007m:16030)
 4.
 E. Aljadeff, C. Kassel,
Polynomial identities and noncommutative versal torsors, arXiv:0708.4108, Adv. Math. (2008), doi:10.1016/j.aim.2008.03.014.
 5.
 E. Aljadeff, M. Natapov,
On the universal graded central simple algebra, Actas del XVI Coloquio Latinoamericano de Álgebra (Colonia, Uruguay, 2005), 115130, Revista Matemática Iberoamericana, Madrid, 2007.
 6.
 E. Aljadeff, J. Sonn,
Projective Schur algebras of nilpotent type are Brauer equivalent to radical algebras, J. Algebra 220 (1999) 401414. MR 1717348 (2000i:16035)
 7.
 Yu. Bahturin, V. Drensky,
Graded polynomial identities of matrices, Linear Algebra Appl. 357 (2002), 1534. MR 1935223 (2003k:16034)
 8.
 Yu. Bahturin, S. Sehgal, M. Zaicev,
Group gradings on associative algebras, J. Algebra 241 (2001) 677698. MR 1843319 (2002h:16067)
 9.
 Yu. Bahturin, M. Zaicev,
Group gradings on matrix algebras. Dedicated to Robert V. Moody. Canad. Math. Bull. 45 (2002), no. 4, 499508. MR 1941224 (2003h:16046)
 10.
 F. DeMeyer, E. Ingraham,
Separable algebras over commutative rings. Lecture Notes in Mathematics, Vol. 181, SpringerVerlag, Berlin  New York, 1971. MR 0280479 (43:6199)
 11.
 F. DeMeyer, G. Janusz,
Finite groups with an irreducible representation of large degree, Math. Z. 108 (1969), 145153. MR 0237629 (38:5910)
 12.
 P. Etingof, S. Gelaki,
A method of construction of finitedimensional triangular semisimple Hopf algebras, Math. Res. Lett. 5 (1998) 551561. MR 1653340 (99i:16069)
 13.
 P. Etingof, S. Gelaki,
The classification of triangular semisimple and cosemisimple Hopf algebras over an algebraically closed field, Intern. Math. Res. Notices (2000) no. 5, 223234. MR 1747109 (2001h:16039)
 14.
 R. Howlett, I. Isaacs,
On groups of central type, Mathematische Zeitschrift 179 (1982) 555569. MR 652860 (83j:20020)
 15.
 I. Isaacs,
Character Theory of Finite Groups, Dover Publications, New York, 1994. MR 1280461
 16.
 G. Karpilovsky,
Group representations, Vol. 2, NorthHolland, Amsterdam, 1993. MR 1215935 (94f:20001)
 17.
 M. Natapov,
Projective bases of division algebras and groups of central type. II, Israel J. Math. 164 (2008) 6173. MR 2391140 (2009a:16032)
 18.
 I. Reiner,
Maximal Orders, Academic Press, London, 1975. MR 1972204 (2004c:16026)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
16W50,
16R10,
16R50,
16S35,
16K20
Retrieve articles in all journals
with MSC (2000):
16W50,
16R10,
16R50,
16S35,
16K20
Additional Information
Eli Aljadeff
Affiliation:
Department of Mathematics, TechnionIsrael Institute of Technology, Haifa 32000, Israel
Email:
aljadeff@tx.technion.ac.il
Darrell Haile
Affiliation:
Department of Mathematics, Indiana University, Bloomington, Indiana 47405
Email:
haile@indiana.edu
Michael Natapov
Affiliation:
Department of Mathematics, Indiana University, Bloomington, Indiana 47405
Address at time of publication:
Department of Mathematics, TechnionIsrael Institute of Technology, Haifa 32000, Israel
Email:
mnatapov@indiana.edu, natapov@tx.technion.ac.il
DOI:
http://dx.doi.org/10.1090/S0002994710048117
Received by editor(s):
October 26, 2007
Received by editor(s) in revised form:
April 22, 2008
Published electronically:
January 7, 2010
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
