On a symplectic generalization of Petrie's conjecture

Author:
Susan Tolman

Journal:
Trans. Amer. Math. Soc. **362** (2010), 3963-3996

MSC (2000):
Primary 53D20

Published electronically:
March 17, 2010

MathSciNet review:
2638879

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by the Petrie conjecture, we consider the following questions: Let a circle act in a Hamiltonian fashion on a compact symplectic manifold which satisfies for all . Is for all ? Is the total Chern class of determined by the cohomology ring ? We answer these questions in the six-dimensional case by showing that is equal to for all , by proving that only four cohomology rings can arise, and by computing the total Chern class in each case. We also prove that there are no exotic actions. More precisely, if is isomorphic to or , then the representations at the fixed components are compatible with one of the standard actions; in the remaining two cases, the representation is strictly determined by the cohomology ring. Finally, our results suggest a natural question: Do the remaining two cohomology rings actually arise? This question is closely related to some interesting problems in symplectic topology, such as embeddings of ellipsoids.

**[AB]**M. F. Atiyah and R. Bott,*The moment map and equivariant cohomology*, Topology**23**(1984), no. 1, 1–28. MR**721448**, 10.1016/0040-9383(84)90021-1**[BV]**Nicole Berline and Michèle Vergne,*Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante*, C. R. Acad. Sci. Paris Sér. I Math.**295**(1982), no. 9, 539–541 (French, with English summary). MR**685019****[Dej]**Italo José Dejter,*Smooth 𝑆¹-manifolds in the homotopy type of 𝐶𝑃³*, Michigan Math. J.**23**(1976), no. 1, 83–95. MR**0402789****[Del]**Thomas Delzant,*Hamiltoniens périodiques et images convexes de l’application moment*, Bull. Soc. Math. France**116**(1988), no. 3, 315–339 (French, with English summary). MR**984900****[Des]**Anand Dessai,*Homotopy complex projective spaces with 𝑃𝑖𝑛(2)-action*, Topology Appl.**122**(2002), no. 3, 487–499. MR**1911696**, 10.1016/S0166-8641(01)00192-4**[GGK]**Victor Guillemin, Viktor Ginzburg, and Yael Karshon,*Moment maps, cobordisms, and Hamiltonian group actions*, Mathematical Surveys and Monographs, vol. 98, American Mathematical Society, Providence, RI, 2002. Appendix J by Maxim Braverman. MR**1929136****[Go]**Leonor Godinho,*Blowing up symplectic orbifolds*, Ann. Global Anal. Geom.**20**(2001), no. 2, 117–162. MR**1857175**, 10.1023/A:1011628628835**[Ha]**Akio Hattori,*𝑆𝑝𝑖𝑛^{𝑐}-structures and 𝑆¹-actions*, Invent. Math.**48**(1978), no. 1, 7–31. MR**508087**, 10.1007/BF01390060**[HBJ]**Friedrich Hirzebruch, Thomas Berger, and Rainer Jung,*Manifolds and modular forms*, Aspects of Mathematics, E20, Friedr. Vieweg & Sohn, Braunschweig, 1992. With appendices by Nils-Peter Skoruppa and by Paul Baum. MR**1189136****[Hu]**Dale Husemoller,*Fibre bundles*, 3rd ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994. MR**1249482****[Ja]**David M. James,*Smooth 𝑆¹ actions on homotopy 𝐶𝑃⁴’s*, Michigan Math. J.**32**(1985), no. 3, 259–266. MR**803831**, 10.1307/mmj/1029003237**[Kar]**Yael Karshon,*Periodic Hamiltonian flows on four-dimensional manifolds*, Mem. Amer. Math. Soc.**141**(1999), no. 672, viii+71. MR**1612833**, 10.1090/memo/0672**[Ki]**Frances Clare Kirwan,*Cohomology of quotients in symplectic and algebraic geometry*, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR**766741****[Li1]**Hui Li,*𝜋₁ of Hamiltonian 𝑆¹ manifolds*, Proc. Amer. Math. Soc.**131**(2003), no. 11, 3579–3582 (electronic). MR**1991771**, 10.1090/S0002-9939-03-06881-3**[Li2]**Hui Li,*Semi-free Hamiltonian circle actions on 6-dimensional symplectic manifolds*, Trans. Amer. Math. Soc.**355**(2003), no. 11, 4543–4568 (electronic). MR**1990761**, 10.1090/S0002-9947-03-03227-6**[Ma]**Mikiya Masuda,*On smooth 𝑆¹-actions on cohomology complex projective spaces. The case where the fixed point set consists of four connected components*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**28**(1981), no. 1, 127–167. MR**617869****[Mc1]**D. McDuff,*Symplectic embeddings of -dimensional ellipsoids*, arXiv:0807.0900.**[Mc2]**D. McDuff,*Some -dimensional Hamiltonian manifolds*, arXiv:0808.3549.**[Mu]**O. R. Musin,*Unitary actions of 𝑆¹ on complex projective spaces*, Uspekhi Mat. Nauk**33**(1978), no. 6(204), 225–226 (Russian). MR**526030****[Pe1]**Ted Petrie,*Smooth 𝑆¹ actions on homotopy complex projective spaces and related topics*, Bull. Amer. Math. Soc.**78**(1972), 105–153. MR**0296970**, 10.1090/S0002-9904-1972-12898-2**[Pe2]**Ted Petrie,*Torus actions on homotopy complex projective spaces*, Invent. Math.**20**(1973), 139–146. MR**0322893****[S]**P. Schlenk,*Embedding problems in symplectic geometry*, De Gruyter Expositions in Mathematics, de Gruyter Verlag, Berlin (2005).**[ToWe1]**Susan Tolman and Jonathan Weitsman,*The cohomology rings of symplectic quotients*, Comm. Anal. Geom.**11**(2003), no. 4, 751–773. MR**2015175**, 10.4310/CAG.2003.v11.n4.a6**[ToWe2]**Susan Tolman and Jonathan Weitsman,*On semifree symplectic circle actions with isolated fixed points*, Topology**39**(2000), no. 2, 299–309. MR**1722020**, 10.1016/S0040-9383(99)00011-7**[TsWa]**Etsuo Tsukada and Ryo Washiyama,*𝑆¹-actions on cohomology complex projective spaces with three components of the fixed point sets*, Hiroshima Math. J.**9**(1979), no. 1, 41–46. MR**529325****[Wal]**C. T. C. Wall,*Classification problems in differential topology. VI. Classification of (𝑠-1)-connected (2𝑠+1)-manifolds*, Topology**6**(1967), 273–296. MR**0216510****[Wan]**Kai Wang,*Differentiable circle group actions on homotopy complex projective spaces*, Math. Ann.**214**(1975), 73–80. MR**0372895****[Yo]**Tomoyoshi Yoshida,*On smooth semifree 𝑆¹ actions on cohomology complex projective spaces*, Publ. Res. Inst. Math. Sci.**11**(1975/76), no. 2, 483–496. MR**0445528**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
53D20

Retrieve articles in all journals with MSC (2000): 53D20

Additional Information

**Susan Tolman**

Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Email:
stolman@math.uiuc.edu

DOI:
https://doi.org/10.1090/S0002-9947-10-04985-8

Received by editor(s):
September 19, 2007

Published electronically:
March 17, 2010

Additional Notes:
The author was partially supported by National Science foundation grant DMS #07-07122.

Article copyright:
© Copyright 2010
American Mathematical Society