Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On a symplectic generalization of Petrie's conjecture

Author: Susan Tolman
Journal: Trans. Amer. Math. Soc. 362 (2010), 3963-3996
MSC (2000): Primary 53D20
Published electronically: March 17, 2010
MathSciNet review: 2638879
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by the Petrie conjecture, we consider the following questions: Let a circle act in a Hamiltonian fashion on a compact symplectic manifold $ (M,\omega)$ which satisfies $ H^{2i}(M;\mathbb{R}) = H^{2i}({\mathbb{C}}{\mathbb{P}}^n,\mathbb{R})$ for all $ i$. Is $ H^j(M;\mathbb{Z}) = H^j({\mathbb{C}}{\mathbb{P}}^n;\mathbb{Z})$ for all $ j$? Is the total Chern class of $ M$ determined by the cohomology ring $ H^*(M;\mathbb{Z})$? We answer these questions in the six-dimensional case by showing that $ H^j(M;\mathbb{Z})$ is equal to $ H^j({\mathbb{C}}{\mathbb{P}}^3;\mathbb{Z})$ for all $ j$, by proving that only four cohomology rings can arise, and by computing the total Chern class in each case. We also prove that there are no exotic actions. More precisely, if $ H^*(M;\mathbb{Z})$ is isomorphic to $ H^*({\mathbb{C}}{\mathbb{P}}^3;\mathbb{Z})$ or $ H^*(\widetilde{G}_2(\mathbb{R}^5);\mathbb{Z})$, then the representations at the fixed components are compatible with one of the standard actions; in the remaining two cases, the representation is strictly determined by the cohomology ring. Finally, our results suggest a natural question: Do the remaining two cohomology rings actually arise? This question is closely related to some interesting problems in symplectic topology, such as embeddings of ellipsoids.

References [Enhancements On Off] (What's this?)

  • [AB] M. Atiyah and R. Bott, The moment map and equivariant cohomology. Topology 23 (1984) 1-28. MR 721448 (85e:58041)
  • [BV] N. Berline and M. Vergne, Classes caractéristiques équivariantes, formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris 295 (1982) 539-541. MR 685019 (83m:58002)
  • [Dej] I. J. Dejter, Smooth $ S^1$ manifolds in the homotopy type of $ {\mathbb{C}}{\mathbb{P}}^3$, Michigan Math. J. 23 (1976), 83-95. MR 0402789 (53:6603)
  • [Del] T. Delzant, Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France 116 (1998) 315-339. MR 984900 (90b:58069)
  • [Des] A. Dessai, Homotopy complex projective spaces with Pin($ 2$)-action, Topology and its Applications, Volume 122, Number 3 (2002), 487-499. MR 1911696 (2003f:58048)
  • [GGK] V. Ginzburg, V. Guillemin, and Y. Karshon, Moment maps, cobordisms, and Hamiltonian group actions, Mathematical Surveys and Monographs, Vol. 98, American Mathematical Society, 2002. MR 1929136 (2003m:53149)
  • [Go] L. Godinho, Blowing up Symplectic Orbifolds, Annals of Global Analysis and Geometry 20: 117-162, 2001. MR 1857175 (2002k:53162)
  • [Ha] A. Hattori, Spin$ ^c$-Structures and $ S^1$-Actions, Invent. Math. 48 (1978), 7-31. MR 508087 (80e:57051)
  • [HBJ] F. Hirzebruch, T. Berger, and R. Jung, Manifolds and modular forms, Aspects of Mathematics, E20, Braunschweig, (1992). MR 1189136 (94d:57001)
  • [Hu] D. Husemöller, Fibre bundles, Springer, 1994. MR 1249482 (94k:55001)
  • [Ja] D. M. James, Smooth $ S^1$-actions on homotopy $ {\mathbb{C}}{\mathbb{P}}^4$'s, Michigan Math. J. 32 (1985), 259-266. MR 803831 (87c:57031)
  • [Kar] Y. Karshon, Periodic Hamiltonian flows on four dimensional manifolds, Memoirs Amer. Math. Soc. 141 (1999). MR 1612833 (2000c:53113)
  • [Ki] F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton University Press, 1984. MR 766741 (86i:58050)
  • [Li1] H. Li, $ \pi_1$ of Hamiltonian $ S^1$ manifolds, Proc. Amer. Math. Soc. 131 (2003), 3579-3582. MR 1991771 (2004b:53145)
  • [Li2] H. Li, Semi-free Hamiltonian circle actions on $ 6$ dimensional symplectic manifolds. Trans. Amer. Math. Soc. 355 (2003) 4543-4568. MR 1990761 (2004e:53127)
  • [Ma] M. Masuda, On smooth $ S^1$-actions on cohomology projective spaces. The case where the fixed point set consists of four connected components, J. Fac. Sci. Univ. Tokyo 28 (1981), 127-167. MR 617869 (82i:57031)
  • [Mc1] D. McDuff, Symplectic embeddings of $ 4$-dimensional ellipsoids, arXiv:0807.0900.
  • [Mc2] D. McDuff, Some $ 6$-dimensional Hamiltonian $ S^1$ manifolds, arXiv:0808.3549.
  • [Mu] O. R. Muslin, Unitary actions of $ S^1$ on complex projective spaces, Russian Math. Surveys 33:6 (1978) 249-250. MR 526030 (81a:57037)
  • [Pe1] T. Petrie, Smooth $ S^1$-actions on cohomology complex projective spaces and related topics, Bull. Math. Soc. 78 (1972), 105-153. MR 0296970 (45:6029)
  • [Pe2] T. Petrie, Torus actions on homotopy complex projective spaces, Invent. Math. 20 (1973), 139-146. MR 0322893 (48:1254)
  • [S] P. Schlenk, Embedding problems in symplectic geometry, De Gruyter Expositions in Mathematics, de Gruyter Verlag, Berlin (2005).
  • [ToWe1] S. Tolman and J. Weitsman, The cohomology rings of symplectic quotients. Comm. Anal. Geom. 11 (2003), no. 4, 751-773. MR 2015175 (2004k:53140)
  • [ToWe2] S. Tolman and J. Weitsman, On semifree circle actions with isolated fixed points, Topology, 39 (2000) no. 2, 299-310. MR 1722020 (2000k:53074)
  • [TsWa] E. Tsukada and R. Washiyama, Smooth $ S^1$-actions on cohomology complex projective spaces with three components of the fixed point set, Hiroshima Math. J. 9 (1979), 41-46. MR 529325 (80j:57043)
  • [Wal] C. T. C. Wall, Classification problems in differential topology V: On certain $ 6$-manifolds, Invent. Math. 1, 355-374 (1996). MR 0216510 (35:7343)
  • [Wan] K. Wang, Differentiable circle group actions on homotopy complex projective spaces, Math. Ann. 214 (1975), 73-80. MR 0372895 (51:9099)
  • [Yo] T. Yoshida, On smooth semi-free $ S^1$-actions on cohomology projective spaces, Publ. Res. Inst. Math. Sci. 11 (1976), 483-496. MR 0445528 (56:3868)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53D20

Retrieve articles in all journals with MSC (2000): 53D20

Additional Information

Susan Tolman
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Received by editor(s): September 19, 2007
Published electronically: March 17, 2010
Additional Notes: The author was partially supported by National Science foundation grant DMS #07-07122.
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society