On a symplectic generalization of Petrie's conjecture
Author:
Susan Tolman
Journal:
Trans. Amer. Math. Soc. 362 (2010), 39633996
MSC (2000):
Primary 53D20
Published electronically:
March 17, 2010
MathSciNet review:
2638879
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Motivated by the Petrie conjecture, we consider the following questions: Let a circle act in a Hamiltonian fashion on a compact symplectic manifold which satisfies for all . Is for all ? Is the total Chern class of determined by the cohomology ring ? We answer these questions in the sixdimensional case by showing that is equal to for all , by proving that only four cohomology rings can arise, and by computing the total Chern class in each case. We also prove that there are no exotic actions. More precisely, if is isomorphic to or , then the representations at the fixed components are compatible with one of the standard actions; in the remaining two cases, the representation is strictly determined by the cohomology ring. Finally, our results suggest a natural question: Do the remaining two cohomology rings actually arise? This question is closely related to some interesting problems in symplectic topology, such as embeddings of ellipsoids.
 [AB]
M.
F. Atiyah and R.
Bott, The moment map and equivariant cohomology, Topology
23 (1984), no. 1, 1–28. MR 721448
(85e:58041), 10.1016/00409383(84)900211
 [BV]
Nicole
Berline and Michèle
Vergne, Classes caractéristiques équivariantes.
Formule de localisation en cohomologie équivariante, C. R.
Acad. Sci. Paris Sér. I Math. 295 (1982),
no. 9, 539–541 (French, with English summary). MR 685019
(83m:58002)
 [Dej]
Italo
José Dejter, Smooth 𝑆¹manifolds in the
homotopy type of 𝐶𝑃³, Michigan Math. J.
23 (1976), no. 1, 83–95. MR 0402789
(53 #6603)
 [Del]
Thomas
Delzant, Hamiltoniens périodiques et images convexes de
l’application moment, Bull. Soc. Math. France
116 (1988), no. 3, 315–339 (French, with
English summary). MR 984900
(90b:58069)
 [Des]
Anand
Dessai, Homotopy complex projective spaces with
𝑃𝑖𝑛(2)action, Topology Appl.
122 (2002), no. 3, 487–499. MR 1911696
(2003f:58048), 10.1016/S01668641(01)001924
 [GGK]
Victor
Guillemin, Viktor
Ginzburg, and Yael
Karshon, Moment maps, cobordisms, and Hamiltonian group
actions, Mathematical Surveys and Monographs, vol. 98, American
Mathematical Society, Providence, RI, 2002. Appendix J by Maxim Braverman.
MR
1929136 (2003m:53149)
 [Go]
Leonor
Godinho, Blowing up symplectic orbifolds, Ann. Global Anal.
Geom. 20 (2001), no. 2, 117–162. MR 1857175
(2002k:53162), 10.1023/A:1011628628835
 [Ha]
Akio
Hattori,
𝑆𝑝𝑖𝑛^{𝑐}structures and
𝑆¹actions, Invent. Math. 48 (1978),
no. 1, 7–31. MR 508087
(80e:57051), 10.1007/BF01390060
 [HBJ]
Friedrich
Hirzebruch, Thomas
Berger, and Rainer
Jung, Manifolds and modular forms, Aspects of Mathematics,
E20, Friedr. Vieweg & Sohn, Braunschweig, 1992. With appendices by
NilsPeter Skoruppa and by Paul Baum. MR 1189136
(94d:57001)
 [Hu]
Dale
Husemoller, Fibre bundles, 3rd ed., Graduate Texts in
Mathematics, vol. 20, SpringerVerlag, New York, 1994. MR 1249482
(94k:55001)
 [Ja]
David
M. James, Smooth 𝑆¹ actions on homotopy
𝐶𝑃⁴’s, Michigan Math. J.
32 (1985), no. 3, 259–266. MR 803831
(87c:57031), 10.1307/mmj/1029003237
 [Kar]
Yael
Karshon, Periodic Hamiltonian flows on fourdimensional
manifolds, Mem. Amer. Math. Soc. 141 (1999),
no. 672, viii+71. MR 1612833
(2000c:53113), 10.1090/memo/0672
 [Ki]
Frances
Clare Kirwan, Cohomology of quotients in symplectic and algebraic
geometry, Mathematical Notes, vol. 31, Princeton University
Press, Princeton, NJ, 1984. MR 766741
(86i:58050)
 [Li1]
Hui
Li, 𝜋₁ of Hamiltonian
𝑆¹ manifolds, Proc. Amer. Math.
Soc. 131 (2003), no. 11, 3579–3582 (electronic). MR 1991771
(2004b:53145), 10.1090/S0002993903068813
 [Li2]
Hui
Li, Semifree Hamiltonian circle actions
on 6dimensional symplectic manifolds, Trans.
Amer. Math. Soc. 355 (2003), no. 11, 4543–4568 (electronic). MR 1990761
(2004e:53127), 10.1090/S0002994703032276
 [Ma]
Mikiya
Masuda, On smooth 𝑆¹actions on cohomology complex
projective spaces. The case where the fixed point set consists of four
connected components, J. Fac. Sci. Univ. Tokyo Sect. IA Math.
28 (1981), no. 1, 127–167. MR 617869
(82i:57031)
 [Mc1]
D. McDuff, Symplectic embeddings of dimensional ellipsoids, arXiv:0807.0900.
 [Mc2]
D. McDuff, Some dimensional Hamiltonian manifolds, arXiv:0808.3549.
 [Mu]
O.
R. Musin, Unitary actions of 𝑆¹ on complex projective
spaces, Uspekhi Mat. Nauk 33 (1978), no. 6(204),
225–226 (Russian). MR 526030
(81a:57037)
 [Pe1]
Ted
Petrie, Smooth 𝑆¹ actions on
homotopy complex projective spaces and related topics, Bull. Amer. Math. Soc. 78 (1972), 105–153. MR 0296970
(45 #6029), 10.1090/S000299041972128982
 [Pe2]
Ted
Petrie, Torus actions on homotopy complex projective spaces,
Invent. Math. 20 (1973), 139–146. MR 0322893
(48 #1254)
 [S]
P. Schlenk, Embedding problems in symplectic geometry, De Gruyter Expositions in Mathematics, de Gruyter Verlag, Berlin (2005).
 [ToWe1]
Susan
Tolman and Jonathan
Weitsman, The cohomology rings of symplectic quotients, Comm.
Anal. Geom. 11 (2003), no. 4, 751–773. MR 2015175
(2004k:53140), 10.4310/CAG.2003.v11.n4.a6
 [ToWe2]
Susan
Tolman and Jonathan
Weitsman, On semifree symplectic circle actions with isolated fixed
points, Topology 39 (2000), no. 2,
299–309. MR 1722020
(2000k:53074), 10.1016/S00409383(99)000117
 [TsWa]
Etsuo
Tsukada and Ryo
Washiyama, 𝑆¹actions on cohomology complex projective
spaces with three components of the fixed point sets, Hiroshima Math.
J. 9 (1979), no. 1, 41–46. MR 529325
(80j:57043)
 [Wal]
C.
T. C. Wall, Classification problems in differential topology. VI.
Classification of (𝑠1)connected (2𝑠+1)manifolds,
Topology 6 (1967), 273–296. MR 0216510
(35 #7343)
 [Wan]
Kai
Wang, Differentiable circle group actions on homotopy complex
projective spaces, Math. Ann. 214 (1975),
73–80. MR
0372895 (51 #9099)
 [Yo]
Tomoyoshi
Yoshida, On smooth semifree 𝑆¹ actions on cohomology
complex projective spaces, Publ. Res. Inst. Math. Sci.
11 (1975/76), no. 2, 483–496. MR 0445528
(56 #3868)
 [AB]
 M. Atiyah and R. Bott, The moment map and equivariant cohomology. Topology 23 (1984) 128. MR 721448 (85e:58041)
 [BV]
 N. Berline and M. Vergne, Classes caractéristiques équivariantes, formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris 295 (1982) 539541. MR 685019 (83m:58002)
 [Dej]
 I. J. Dejter, Smooth manifolds in the homotopy type of , Michigan Math. J. 23 (1976), 8395. MR 0402789 (53:6603)
 [Del]
 T. Delzant, Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France 116 (1998) 315339. MR 984900 (90b:58069)
 [Des]
 A. Dessai, Homotopy complex projective spaces with Pin()action, Topology and its Applications, Volume 122, Number 3 (2002), 487499. MR 1911696 (2003f:58048)
 [GGK]
 V. Ginzburg, V. Guillemin, and Y. Karshon, Moment maps, cobordisms, and Hamiltonian group actions, Mathematical Surveys and Monographs, Vol. 98, American Mathematical Society, 2002. MR 1929136 (2003m:53149)
 [Go]
 L. Godinho, Blowing up Symplectic Orbifolds, Annals of Global Analysis and Geometry 20: 117162, 2001. MR 1857175 (2002k:53162)
 [Ha]
 A. Hattori, SpinStructures and Actions, Invent. Math. 48 (1978), 731. MR 508087 (80e:57051)
 [HBJ]
 F. Hirzebruch, T. Berger, and R. Jung, Manifolds and modular forms, Aspects of Mathematics, E20, Braunschweig, (1992). MR 1189136 (94d:57001)
 [Hu]
 D. Husemöller, Fibre bundles, Springer, 1994. MR 1249482 (94k:55001)
 [Ja]
 D. M. James, Smooth actions on homotopy 's, Michigan Math. J. 32 (1985), 259266. MR 803831 (87c:57031)
 [Kar]
 Y. Karshon, Periodic Hamiltonian flows on four dimensional manifolds, Memoirs Amer. Math. Soc. 141 (1999). MR 1612833 (2000c:53113)
 [Ki]
 F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton University Press, 1984. MR 766741 (86i:58050)
 [Li1]
 H. Li, of Hamiltonian manifolds, Proc. Amer. Math. Soc. 131 (2003), 35793582. MR 1991771 (2004b:53145)
 [Li2]
 H. Li, Semifree Hamiltonian circle actions on dimensional symplectic manifolds. Trans. Amer. Math. Soc. 355 (2003) 45434568. MR 1990761 (2004e:53127)
 [Ma]
 M. Masuda, On smooth actions on cohomology projective spaces. The case where the fixed point set consists of four connected components, J. Fac. Sci. Univ. Tokyo 28 (1981), 127167. MR 617869 (82i:57031)
 [Mc1]
 D. McDuff, Symplectic embeddings of dimensional ellipsoids, arXiv:0807.0900.
 [Mc2]
 D. McDuff, Some dimensional Hamiltonian manifolds, arXiv:0808.3549.
 [Mu]
 O. R. Muslin, Unitary actions of on complex projective spaces, Russian Math. Surveys 33:6 (1978) 249250. MR 526030 (81a:57037)
 [Pe1]
 T. Petrie, Smooth actions on cohomology complex projective spaces and related topics, Bull. Math. Soc. 78 (1972), 105153. MR 0296970 (45:6029)
 [Pe2]
 T. Petrie, Torus actions on homotopy complex projective spaces, Invent. Math. 20 (1973), 139146. MR 0322893 (48:1254)
 [S]
 P. Schlenk, Embedding problems in symplectic geometry, De Gruyter Expositions in Mathematics, de Gruyter Verlag, Berlin (2005).
 [ToWe1]
 S. Tolman and J. Weitsman, The cohomology rings of symplectic quotients. Comm. Anal. Geom. 11 (2003), no. 4, 751773. MR 2015175 (2004k:53140)
 [ToWe2]
 S. Tolman and J. Weitsman, On semifree circle actions with isolated fixed points, Topology, 39 (2000) no. 2, 299310. MR 1722020 (2000k:53074)
 [TsWa]
 E. Tsukada and R. Washiyama, Smooth actions on cohomology complex projective spaces with three components of the fixed point set, Hiroshima Math. J. 9 (1979), 4146. MR 529325 (80j:57043)
 [Wal]
 C. T. C. Wall, Classification problems in differential topology V: On certain manifolds, Invent. Math. 1, 355374 (1996). MR 0216510 (35:7343)
 [Wan]
 K. Wang, Differentiable circle group actions on homotopy complex projective spaces, Math. Ann. 214 (1975), 7380. MR 0372895 (51:9099)
 [Yo]
 T. Yoshida, On smooth semifree actions on cohomology projective spaces, Publ. Res. Inst. Math. Sci. 11 (1976), 483496. MR 0445528 (56:3868)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
53D20
Retrieve articles in all journals
with MSC (2000):
53D20
Additional Information
Susan Tolman
Affiliation:
Department of Mathematics, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801
Email:
stolman@math.uiuc.edu
DOI:
http://dx.doi.org/10.1090/S0002994710049858
Received by editor(s):
September 19, 2007
Published electronically:
March 17, 2010
Additional Notes:
The author was partially supported by National Science foundation grant DMS #0707122.
Article copyright:
© Copyright 2010
American Mathematical Society
