Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Calibrations associated to Monge-Ampère equations


Author: Micah Warren
Journal: Trans. Amer. Math. Soc. 362 (2010), 3947-3962
MSC (2000): Primary 35J60
DOI: https://doi.org/10.1090/S0002-9947-10-05109-3
Published electronically: March 9, 2010
MathSciNet review: 2608392
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show the volume maximizing property of the special Lagrangian submanifolds of a pseudo-Euclidean space. These special Lagrangian submanifolds arise locally as gradient graphs of solutions to Monge-Ampère equations.


References [Enhancements On Off] (What's this?)

  • 1. Eugenio Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958), 105-126. MR 0106487 (21:5219)
  • 2. Vicente Cortés, Christoph Mayer, Thomas Mohaupt, and Frank Saueressig, Special geometry of Euclidean supersymmetry. I. Vector multiplets, J. High Energy Phys. (2004), no. 3, 028, 73 pp. (electronic). MR 2061551 (2005c:53055)
  • 3. Harley Flanders, On certain functions with positive definite Hessian, Ann. of Math. (2) 71 (1960), 153-156. MR 0145025 (26:2562)
  • 4. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190 (86c:35035)
  • 5. Reese Harvey and H. Blaine Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157. MR 666108 (85i:53058)
  • 6. Nigel J. Hitchin, The moduli space of special Lagrangian submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 3-4, 503-515 (1998). Dedicated to Ennio De Giorgi. MR 1655530 (2000c:32075)
  • 7. Konrad Jörgens, Über die Lösungen der Differentialgleichung $ rt-s\sp 2=1$, Math. Ann. 127 (1954), 130-134. MR 0062326 (15:961e)
  • 8. Jürgen Jost and Yuan-Long Xin, Bernstein type theorems for higher codimension, Calc. Var. Partial Differential Equations 9 (1999), no. 4, 277-296. MR 1731468 (2001e:53010)
  • 9. Young-Heon Kim and Robert J. McCann, Continuity, curvature, and the general covariance of optimal transportation, Journal of the European Mathematical Society (To Appear).
  • 10. Young-Heon Kim, Robert J. McCann, and Micah Warren, Pseudo-Riemannian geometry calibrates optimal transportation, Preprint.
  • 11. Jack Mealy, Volume maximization in semi-Riemannian manifolds, Indiana Univ. Math. J. 40 (1991), no. 3, 793-814. MR 1129330 (92k:53123)
  • 12. Robert C. McLean, Deformations of calibrated submanifolds, Comm. Anal. Geom. 6 (1998), no. 4, 705-747. MR 1664890 (99j:53083)
  • 13. A. V. Pogorelov, On the improper convex affine hyperspheres, Geometriae Dedicata 1 (1972), no. 1, 33-46. MR 0319126 (47:7672)
  • 14. Yu Yuan, A Bernstein problem for special Lagrangian equations, Invent. Math. 150 (2002), no. 1, 117-125. MR 1930884 (2003k:53060)
  • 15. -, Global solutions to special Lagrangian equations, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1355-1358.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J60

Retrieve articles in all journals with MSC (2000): 35J60


Additional Information

Micah Warren
Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195-4350
Address at time of publication: Department of Mathematics, Fine Hall, Princeton University, Washington Road, Princeton, New Jersey 08544-1000
Email: mww@princeton.edu

DOI: https://doi.org/10.1090/S0002-9947-10-05109-3
Received by editor(s): July 17, 2006
Published electronically: March 9, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society