Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Flows without wandering points on compact connected surfaces

Authors: Milton Cobo, Carlos Gutierrez and Jaume Llibre
Journal: Trans. Amer. Math. Soc. 362 (2010), 4569-4580
MSC (2000): Primary 37B05, 37B10, 47B36, 47B37
Published electronically: April 14, 2010
MathSciNet review: 2645042
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a compact $ 2$-dimensional manifold $ M$ we classify all continuous flows $ \varphi$ without wandering points on $ M$. This classification is performed by finding finitely many pairwise disjoint open $ \varphi-$invariant subsets $ \{U_1, U_2, \ldots, U_n\}$ of $ M$ such that $ \bigcup_{i=1}^n{\overline{U_i}} = M$ and each $ U_i$ is either a suspension of an interval exchange transformation, or a maximal open cylinder made up of closed trajectories of $ \varphi$.

References [Enhancements On Off] (What's this?)

  • 1. A.A. ANDRONOV, E.A. LEONTOVICH, I.I. GORDON AND A.G. MAIER, Qualitative Theory of Second Order Dynamical Systems, translated by John Wiley & Sons, New York, 1973. MR 0350126 (50:2619)
  • 2. C. GUTIERREZ, Structural stability for flows on the torus with a cross-cap, Trans. Amer. Math. Soc. 241 (1978), 311-320. MR 492303 (80k:58065)
  • 3. C. GUTIERREZ, Smoothability of Cherry flows on two-manifolds, in Geometric Dynamics, Springer Lecture Notes in Mathematics 1007 (1981), 308-331. MR 730275 (85h:58148)
  • 4. C. GUTIERREZ, Smoothing continuous flows on two-manifolds and recurrences, Ergod. Th. & Dynam. Sys. 6 (1986), 17-44. MR 837974 (87k:58222)
  • 5. P. HARTMAN, Ordinary Differential Equations, John Wiley and Sons. Inc., 1964. MR 0171038 (30:1270)
  • 6. A. KATOK AND B. HASSELBLATT, Introduction to the modern theory of dynamical systems, with a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Math. and its Appl. 54, Cambridge University Press, 1995. MR 1326374 (96c:58055)
  • 7. M. KEANE, Interval Exchange Transformations, Math. Z. 141 (1975), 25-31. MR 0357739 (50:10207)
  • 8. N. MARKLEY, The Poincaré-Bendixson theorem for the Klein bottle, Trans. Amer. Math. Soc. 135 (1969), 159-165. MR 0234442 (38:2759)
  • 9. I. NIKOLAEV AND E. ZHUZHOMA, Flows on $ 2$-dimensional manifolds, Springer Lecture Notes in Mathematics, Vol. 1705, Berlin, 1999. MR 1707298 (2001b:37065)
  • 10. J. PALIS, JR. AND W. DE MELO, Geometric Theory of Dynamical Systems, Springer-Verlag, New York, Heidelberg Berlin, 1982. MR 0669541 (84a:58004)
  • 11. M. PEIXOTO, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101-120. MR 0142859 (26:426)
  • 12. W. A. VEECH, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), 201-242. MR 644019 (83g:28036b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37B05, 37B10, 47B36, 47B37

Retrieve articles in all journals with MSC (2000): 37B05, 37B10, 47B36, 47B37

Additional Information

Milton Cobo
Affiliation: Departamento de Matemática, Universidade Federal do Espírito Santo, Av. Fernando Ferrari 514, Vitoria, ES 19075-910 Brazil

Carlos Gutierrez
Affiliation: Departamento de Mateática, Instituto de Ciências Matemáticas e de Computação, Universidade de Sao Paulo, CxP 668, São Carlos, SP, 13560-970 Brazil

Jaume Llibre
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bella- terra, Barcelona, Catalonia, Spain

Keywords: Interval exchange transformation, flows in compact surfaces, wandering sets
Received by editor(s): May 10, 2008
Published electronically: April 14, 2010
Additional Notes: Unfortunately the second author died during the period that this manuscript was submitted.
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society