Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

An unavoidable set of $D$-reducible configurations
HTML articles powered by AMS MathViewer

by John P. Steinberger PDF
Trans. Amer. Math. Soc. 362 (2010), 6633-6661 Request permission

Abstract:

We give a new proof of the four-color theorem by exhibiting an unavoidable set of 2822 $D$-reducible configurations. The existence of such a set had been conjectured by several researchers including Stromquist (1975), Appel and Haken (1977), and Robertson, Sanders, Seymour and Thomas (1997).
References
  • Frank Allaire, Another proof of the four colour theorem. I, Proceedings of the Seventh Manitoba Conference on Numerical Mathematics and Computing (Univ. Manitoba, Winnipeg, Man., 1977) Congress. Numer., XX, Utilitas Math., Winnipeg, Man., 1978, pp. 3–72. MR 535003
  • K. Appel and W. Haken, Every planar map is four colorable. I. Discharging, Illinois J. Math. 21 (1977), no. 3, 429–490. MR 543792
  • K. Appel, W. Haken, and J. Koch, Every planar map is four colorable. II. Reducibility, Illinois J. Math. 21 (1977), no. 3, 491–567. MR 543793
  • Kenneth Appel and Wolfgang Haken, Every planar map is four colorable, Contemporary Mathematics, vol. 98, American Mathematical Society, Providence, RI, 1989. With the collaboration of J. Koch. MR 1025335, DOI 10.1090/conm/098
  • G.D. Birkhoff, The reducibility of maps, Amer. J. Math. 70 (1913), 114–128.
  • Arthur Bernhart, Another reducible edge configuration, Amer. J. Math. 70 (1948), 144–146. MR 23513, DOI 10.2307/2371940
  • D.I.A. Cohen, Block-count reducibility and the four-color theorem, manuscript.
  • Rudolf Fritsch and Gerda Fritsch, The four-color theorem, Springer-Verlag, New York, 1998. History, topological foundations, and idea of proof; Translated from the 1994 German original by Julie Peschke. MR 1633950, DOI 10.1007/978-1-4612-1720-6
  • S. J. Gismondi and E. R. Swart, A new type of $4$-colour reducibility, Proceedings of the Twenty-second Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1991), 1991, pp. 33–48. MR 1152056
  • G. Gonthier, A computer-checked proof of the four-color theorem, http://research.microsoft.com/$\sim$gonthier/fourcolor.pdf.
  • W. Haken, Shimamoto’s construction, manuscript (1971), available at http://www.math.ubc.ca/$\sim$jpsteinb/index.html.
  • Heinrich Heesch, Untersuchungen zum Vierfarbenproblem, B. I. Hochschulskripten, vol. 810/810, Bibliographisches Institut, Mannheim-Vienna-Zürich, 1969 (German). MR 0248048
  • A. B. Kempe, On the Geographical Problem of the Four Colours, Amer. J. Math. 2 (1879), no. 3, 193–200. MR 1505218, DOI 10.2307/2369235
  • Jean Mayer, Une propriété des graphes minimaux dans le problème des quatre couleurs, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976) Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 291–295 (French, with English summary). MR 539995
  • Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1997), no. 1, 2–44. MR 1441258, DOI 10.1006/jctb.1997.1750
  • —, Reducibility in the four colour theorem, available at http://math.gatech. edu/$\sim$thomas/OLDFTP/four.
  • —, Discharging cartwheels, available at http://math.gatech.edu/$\sim$thomas/ OLDFTP/four.
  • W.R. Stromquist, Some aspects of the four color problem, Ph.D., Harvard University, 1975. Available at http:// www.walterstromquist.com.
  • Hassler Whitney and W. T. Tutte, Kempe chains and the four colour problem, Studies in graph theory, Part II, Studies in Math., Vol. 12, Math. Assoc. Amer., Washington, D.C., 1975, pp. 378–413. MR 0392651
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 05C15
  • Retrieve articles in all journals with MSC (2000): 05C15
Additional Information
  • John P. Steinberger
  • Affiliation: Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia, Canada V6T 1Z2
  • Address at time of publication: Department of Mathematics, FIT Building 1-208, Tsinghua University, Beijing, 100084, People’s Republic of China
  • Email: jpsteinb@gmail.com
  • Received by editor(s): July 7, 2008
  • Received by editor(s) in revised form: April 23, 2009
  • Published electronically: July 9, 2010
  • © Copyright 2010 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 362 (2010), 6633-6661
  • MSC (2000): Primary 05C15
  • DOI: https://doi.org/10.1090/S0002-9947-2010-05092-5
  • MathSciNet review: 2678989