The modular variety of hyperelliptic curves of genus three
Authors:
Eberhard Freitag and Riccardo Salvati Manni
Journal:
Trans. Amer. Math. Soc. 363 (2011), 281312
MSC (2010):
Primary 11F46, 11F55
Published electronically:
August 23, 2010
MathSciNet review:
2719682
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The modular variety of nonsingular and complete hyperelliptic curves with leveltwo structure of genus is a 5dimensional quasiprojective variety which admits several standard compactifications. The first one realizes this variety as a subvariety of the Siegel modular variety of level two and genus three. It has 36 irreducible (isomorphic) components. One of the purposes of this paper will be to describe the equations of one of these components. Two further models use the fact that hyperelliptic curves of genus three can be obtained as coverings of a projective line with branch points. There are two important compactifications of this configuration space. The first one, , uses the semistable degenerated point configurations in . This variety also can be identified with a BailyBorel compactified ballquotient We will describe these results in some detail and obtain new proofs including some finer results for them. The other compactification uses the fact that families of marked projective lines can degenerate to stable marked curves of genus 0. We use the standard notation for this compactification. We have a diagram The horizontal arrow is only birational but not everywhere regular. In this paper we find another realization of this triangle which uses the fact that there are graded algebras (closely related to algebras of modular forms) such that
 [AF]
Daniel
Allcock and Eberhard
Freitag, Cubic surfaces and Borcherds products, Comment. Math.
Helv. 77 (2002), no. 2, 270–296. MR 1915042
(2004c:14067), http://dx.doi.org/10.1007/s0001400283404
 [AL]
D.
Avritzer and H.
Lange, The moduli spaces of hyperelliptic curves and binary
forms, Math. Z. 242 (2002), no. 4,
615–632. MR 1981190
(2004c:14051), http://dx.doi.org/10.1007/s002090100370
 [Bo]
Richard
E. Borcherds, Automorphic forms with singularities on
Grassmannians, Invent. Math. 132 (1998), no. 3,
491–562. MR 1625724
(99c:11049), http://dx.doi.org/10.1007/s002220050232
 [DP]
C.
de Concini and C.
Procesi, A characteristic free approach to invariant theory,
Advances in Math. 21 (1976), no. 3, 330–354. MR 0422314
(54 #10305)
 [Fr1]
E.
Freitag, Some modular forms related to cubic surfaces,
Kyungpook Math. J. 43 (2003), no. 3, 433–462.
MR
2003489 (2004h:11044)
 [Fr2]
Freitag, E.: Comparison of different models of the moduli space of marked cubic surfaces, Proceedings of JapaneseGerman Seminar, Ryushido, edited by T. Ibukyama and W. Kohnen, 7479 (2002)
 [Fr3]
E.
Freitag, Siegelsche Modulfunktionen, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 254, SpringerVerlag, Berlin, 1983 (German). MR 871067
(88b:11027)
 [FS]
Eberhard
Freitag and Riccardo
Salvati Manni, Modular forms for the even modular
lattice of signature (2,10), J. Algebraic
Geom. 16 (2007), no. 4, 753–791. MR 2357689
(2009b:11088), http://dx.doi.org/10.1090/S1056391107004602
 [Gl]
J.
P. Glass, Theta constants of genus three, Compositio Math.
40 (1980), no. 1, 123–137. MR 558261
(80m:14028)
 [Ho]
Roger
Howe, The classical groups and invariants of binary forms, The
mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos.
Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988,
pp. 133–166. MR 974333
(90e:22022)
 [HMSV1]
Howard, B.J. Millson, J. Snowden, A. Vakil, R.: The projective invariants of ordered points on the line, ArXiv Mathematics eprints math.AG/0505096 (2007)
 [HMSV2]
Howard, B.J. Millson, J. Snowden, A. Vakil, R.: The moduli space of n points on the line is cut out by simple quadrics when is not six, ArXiv Mathematics eprints math.AG/0607372 (2007)
 [Ig1]
Junichi
Igusa, On the graded ring of thetaconstants, Amer. J. Math.
86 (1964), 219–246. MR 0164967
(29 #2258)
 [Ig2]
Junichi
Igusa, Modular forms and projective invariants, Amer. J. Math.
89 (1967), 817–855. MR 0229643
(37 #5217)
 [Ka]
M.
M. Kapranov, Chow quotients of Grassmannians. I, I. M.
Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc.,
Providence, RI, 1993, pp. 29–110. MR 1237834
(95g:14053)
 [Ko1]
Shigeyuki
Kondō, The moduli space of Enriques surfaces
and Borcherds products, J. Algebraic Geom.
11 (2002), no. 4,
601–627. MR 1910262
(2003m:14055), http://dx.doi.org/10.1090/S1056391102003016
 [Ko2]
Shigeyuki
Kondō, The moduli space of 8 points of ℙ¹ and
automorphic forms, Algebraic geometry, Contemp. Math., vol. 422,
Amer. Math. Soc., Providence, RI, 2007, pp. 89–106. MR 2296434
(2008h:14027), http://dx.doi.org/10.1090/conm/422/08057
 [Koi]
Koike, K.: The projective embedding of the configuration space , Technical Reports of Mathematical Sciences, Chiba University, 16 (2000)
 [MY]
Keiji
Matsumoto and Masaaki
Yoshida, Configuration space of 8 points on the projective line and
a 5dimensional Picard modular group, Compositio Math.
86 (1993), no. 3, 265–280. MR 1219628
(94c:14038)
 [Mu]
David
Mumford, Tata lectures on theta. II, Modern Birkhäuser
Classics, Birkhäuser Boston Inc., Boston, MA, 2007. Jacobian theta
functions and differential equations; With the collaboration of C. Musili,
M. Nori, E. Previato, M. Stillman and H. Umemura; Reprint of the 1984
original. MR
2307768 (2007k:14087)
 [Ru1]
Bernhard
Runge, On Siegel modular forms. I, J. Reine Angew. Math.
436 (1993), 57–85. MR 1207281
(94c:11041), http://dx.doi.org/10.1515/crll.1993.436.57
 [Ru2]
Bernhard
Runge, On Siegel modular forms. II, Nagoya Math. J.
138 (1995), 179–197. MR 1339948
(97b:11066)
 [Ts]
Shigeaki
Tsuyumine, Thetanullwerte on a moduli space of curves and
hyperelliptic loci, Math. Z. 207 (1991), no. 4,
539–568. MR 1119956
(92j:14037), http://dx.doi.org/10.1007/BF02571407
 [AF]
 Allcock, D. Freitag, E.: Cubic surfaces and Borcherds products, Commentarii Math. Helv. Vol. 77, Issue 2, 270296 (2002) MR 1915042 (2004c:14067)
 [AL]
 Avritzer, D. Lange, H.: The moduli spaces of hyperelliptic curves and binary forms, Math. Z. 242, 615632 (2002) MR 1981190 (2004c:14051)
 [Bo]
 Borcherds, R.: Automorphic forms with singularities on Grassmannians, Invent. Math. 132, 491562 (1998) MR 1625724 (99c:11049)
 [DP]
 De Concini, C. Procesi, C.: A characteristic free approach to invariant theory, Adv. Math 21 330354 (1976) MR 0422314 (54:10305)
 [Fr1]
 Freitag, E.: Some modular forms related to cubic surfaces, Kyungpook Math. J. 43, No.3, 433462 (2003) MR 2003489 (2004h:11044)
 [Fr2]
 Freitag, E.: Comparison of different models of the moduli space of marked cubic surfaces, Proceedings of JapaneseGerman Seminar, Ryushido, edited by T. Ibukyama and W. Kohnen, 7479 (2002)
 [Fr3]
 Freitag, E.: Siegelsche Modulfunktionen, Grundlehren der mathematischen Wissenschaften, 254 BerlinHeidelbergNew York: SpringerVerlag (1983) MR 871067 (88b:11027)
 [FS]
 Freitag, E. Salvati Manni, R.: Modular forms for the even unimodular lattice of signature (2,10), J. Algebraic Geom. 16, 753791 (2007) MR 2357689 (2009b:11088)
 [Gl]
 Glass, J. : Theta constants of genus three, Compositio Math. 40, 123137 (1980). MR 558261 (80m:14028)
 [Ho]
 Howe, R.: The classical groups and invariants of bilinear forms, The Mathematical Heritage of Hermann Weyl (Durham, NC, 1987), 133166, Proc. Sympos. Pure Math. 48, Amer. Math. Soc., Providence, RI (1988) MR 974333 (90e:22022)
 [HMSV1]
 Howard, B.J. Millson, J. Snowden, A. Vakil, R.: The projective invariants of ordered points on the line, ArXiv Mathematics eprints math.AG/0505096 (2007)
 [HMSV2]
 Howard, B.J. Millson, J. Snowden, A. Vakil, R.: The moduli space of n points on the line is cut out by simple quadrics when is not six, ArXiv Mathematics eprints math.AG/0607372 (2007)
 [Ig1]
 Igusa, J.: On the graded ring of thetaconstants Amer. J. Math. 86, 219246 (1964). MR 0164967 (29:2258)
 [Ig2]
 Igusa, J.: Modular forms and projective invariants Amer. J. Math. 89, 817855 (1967). MR 0229643 (37:5217)
 [Ka]
 Kapranov, M.M.: Chow quotients of Grassmannians I, Adv. Sov. Math. 16 (2), 29110 (1993) MR 1237834 (95g:14053)
 [Ko1]
 Kondo, S.: The moduli space of Enriques surfaces and Borcherds products, J. Algebraic Geometry 11, 601627 (2002) MR 1910262 (2003m:14055)
 [Ko2]
 Kondo, S.: The moduli space of points on and automorphic forms in Algebraic Geometry Contemporary Mathematics 422, 89106 (2007), Amer. Math. Soc. MR 2296434 (2008h:14027)
 [Koi]
 Koike, K.: The projective embedding of the configuration space , Technical Reports of Mathematical Sciences, Chiba University, 16 (2000)
 [MY]
 Matsumoto, K. Yoshida, M.: Configuration space of points on the projective line and a dimensional Picard modular group, Compositio Math. 86, 265280 (1993) MR 1219628 (94c:14038)
 [Mu]
 Mumford, D.: Tata Lectures on Theta II, Modern Birkhäuser Classics, Reprint of the 1984 edition, 2007. MR 2307768 (2007k:14087)
 [Ru1]
 Runge, B.: On Siegel modular form, part I, J. reine angew. Math. 436, 5785 (1993) MR 1207281 (94c:11041)
 [Ru2]
 Runge, B.: On Siegel modular forms, part II, Nagoya Math. J. 138, 179197 (1995) MR 1339948 (97b:11066)
 [Ts]
 Tsuyumune, S.: Thetanullwerte on a moduli space of curves and hyperelliptic loci, Math. Zeit. 207, 539568 (1991) MR 1119956 (92j:14037)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2010):
11F46,
11F55
Retrieve articles in all journals
with MSC (2010):
11F46,
11F55
Additional Information
Eberhard Freitag
Affiliation:
Mathematisches Institut, University of Heidelberg, Im Neuenheimer Feld 288, D69120 Heidelberg, Germany
Email:
Freitag@mathi.uniheidelberg.de
Riccardo Salvati Manni
Affiliation:
Dipartimento di Matematica, University La Sapienza, Piazzale Aldo Moro, 2, I00185 Roma, Italy
Email:
salvati@mat.uniroma1.it
DOI:
http://dx.doi.org/10.1090/S00029947201005024X
PII:
S 00029947(2010)05024X
Received by editor(s):
December 2, 2007
Received by editor(s) in revised form:
January 29, 2009
Published electronically:
August 23, 2010
Article copyright:
© Copyright 2010 American Mathematical Society
