Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A characterization and a generalization of $ W^*$-modules


Authors: David P. Blecher and Upasana Kashyap
Journal: Trans. Amer. Math. Soc. 363 (2011), 345-363
MSC (2010): Primary 46L08, 47L30, 47L45; Secondary 16D90, 47L25
DOI: https://doi.org/10.1090/S0002-9947-2010-05153-0
Published electronically: August 18, 2010
MathSciNet review: 2719685
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new Banach module characterization of $ W^*$-modules, also known as self-dual Hilbert $ C^*$-modules over a von Neumann algebra. This leads to a generalization of the notion, and the theory, of $ W^*$-modules, to the setting where the operator algebras are $ \sigma$-weakly closed algebras of operators on a Hilbert space. That is, we find the appropriate weak* topology variant of our earlier notion of rigged modules, and their theory, which in turn generalizes the notions of a $ C^*$-module and a Hilbert space, successively. Our $ w^*$-rigged modules have canonical `envelopes' which are $ W^*$-modules. Indeed, a $ w^*$-rigged module may be defined to be a subspace of a $ W^*$-module possessing certain properties.


References [Enhancements On Off] (What's this?)

  • 1. M. Baillet, Y. Denizeau, and J.-F. Havet, Indice d'une espérance conditionnelle, Compositio Math. 66 (1988), 199-236. MR 945550 (90e:46050)
  • 2. D. P. Blecher, A generalization of Hilbert modules, J. Funct. Anal. 136 (1996), 365-421. MR 1380659 (97g:46071)
  • 3. D. P. Blecher, Some general theory of operator algebras and their modules, pp.113-144 in ``Operator Algebras and Applications'', Ed. A. Katavolos, Nato ASI Series, Series C - Vol. 495, Kluwer (1997). MR 1462678 (98g:46079)
  • 4. D. P. Blecher, A new approach to Hilbert $ C\sp *$-modules, Math. Ann. 307 (1997), 253-290. MR 1428873 (98d:46063)
  • 5. D. P. Blecher, On selfdual Hilbert modules, Operator algebras and their applications, pp. 65-80, Fields Inst. Commun., 13, Amer. Math. Soc., Providence, RI, 1997. MR 1424955 (97k:46070)
  • 6. D. P. Blecher, D. M. Hay, and M. Neal, Hereditary subalgebras of operator algebras, J. Operator Theory 59 (2008), 333-357. MR 2411049
  • 7. D. P. Blecher and K. Jarosz, Isomorphisms of function modules, and generalized approximation in modulus, Trans. Amer. Math. Soc. 354 (2002), 3663-3701. MR 1911516 (2003c:46064)
  • 8. D. P. Blecher and U. Kashyap, Morita equivalence of dual operator algebras, J. Pure and Applied Algebra 212 (2008), 2401-2412. MR 2440255 (2009g:47189)
  • 9. D. P. Blecher and J. Kraus, On a generalization of $ W^*$-modules, Submitted (2009).
  • 10. D. P. Blecher and C. Le Merdy, Operator algebras and their modules--an operator space approach, London Mathematical Society Monographs, Oxford Univ. Press, Oxford, 2004. MR 2111973 (2006a:46070)
  • 11. D. P. Blecher and B. Magajna, Duality and operator algebras: Automatic weak$ \sp *$ continuity and applications, J. Funct. Anal. 224 (2005), 386-407. MR 2146046 (2006g:46093)
  • 12. D. P. Blecher, P. S. Muhly, and V. I. Paulsen, Categories of operator modules (Morita equivalence and projective modules), Mem. Amer. Math. Soc. 143 (2000), no. 681. MR 1645699 (2000j:46132)
  • 13. Y. Denizeau and J.-F. Havet, Correspondances d'indice fini. I: Indice d'un vecteur, J. Operator Theory 32 (1994), 111-156. MR 1332446 (96e:46081)
  • 14. E. G. Effros, N. Ozawa, and Z.-J. Ruan, On injectivity and nuclearity for operator spaces, Duke Math. J. 110 (2001), 489-521. MR 1869114 (2002k:46151)
  • 15. E. G. Effros and Z.-J. Ruan, Representations of operator bimodules and their applications, J. Operator Theory 19 (1988), 137-157. MR 950830 (91e:46077)
  • 16. G. K. Eleftherakis, A Morita type equivalence for dual operator algebras, J. Pure Appl. Algebra 212 (2008), 1060-1071. MR 2387585 (2008m:47098)
  • 17. G. K. Eleftherakis and V. I. Paulsen, Stably isomorphic dual operator algebras, Math. Ann. 341 (2008), 99-112. MR 2377471 (2009a:46111)
  • 18. U. Kashyap, Morita equivalence of dual operator algebras, Ph. D. thesis (University of Houston), December 2008.
  • 19. U. Kashyap, A Morita theorem for dual operator algebras, J. Funct. Anal. 256 (2009), 3545-3567.
  • 20. B. Magajna, Strong operator modules and the Haagerup tensor product, Proc. London Math. Soc. 74 (1997), 201-240. MR 1416731 (98e:46072)
  • 21. W. L. Paschke, Inner product modules over $ B^*$-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468. MR 0355613 (50:8087)
  • 22. M. A. Rieffel, Morita equivalence for $ C^{*}$-algebras and $ W^{*}$-algebras, J. Pure Appl. Algebra 5 (1974), 51-96. MR 0367670 (51:3912)
  • 23. H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983), 117-143. MR 700979 (84h:46093)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L08, 47L30, 47L45, 16D90, 47L25

Retrieve articles in all journals with MSC (2010): 46L08, 47L30, 47L45, 16D90, 47L25


Additional Information

David P. Blecher
Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3008
Email: dblecher@math.uh.edu

Upasana Kashyap
Affiliation: Department of Mathematics and Computer Science, The Citadel, 171 Moultrie Street, Charleston, South Carolina 29409
Email: ukashyap1@citadel.edu

DOI: https://doi.org/10.1090/S0002-9947-2010-05153-0
Received by editor(s): December 7, 2007
Received by editor(s) in revised form: December 10, 2007, and March 23, 2009
Published electronically: August 18, 2010
Additional Notes: The first author was supported by grant DMS 0400731 from the National Science Foundation
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society