Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

New hypergeometric-like series for $ 1/\pi^2$ arising from Ramanujan's theory of elliptic functions to alternative base 3


Authors: Nayandeep Deka Baruah and Narayan Nayak
Journal: Trans. Amer. Math. Soc. 363 (2011), 887-900
MSC (2010): Primary 33C05; Secondary 33E05, 11F11, 11R29
DOI: https://doi.org/10.1090/S0002-9947-2010-05180-3
Published electronically: August 24, 2010
MathSciNet review: 2728588
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By using certain representations for Eisenstein series, we find new hypergeometric-like series for $ 1/\pi^2$ arising from Ramanujan's theory of elliptic functions to alternative base 3.


References [Enhancements On Off] (What's this?)

  • 1. G.  E. Andrews, R.  Askey, R.  Roy, Special functions: Encyclopedia of Mathematics and its Applications, 71 Cambridge Univ. Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  • 2. N.  D.  Baruah, B. C. Berndt, Ramanujan's series for $ 1/\pi$ arising from his cubic and quartic theories of elliptic functions, J.  Math. Anal. Appl. 341 (2008), 357-371. MR 2394090 (2009d:33053)
  • 3. N.  D.  Baruah, B. C. Berndt, Ramanujan's Eisenstein Series and new hypergeometric-like series for $ 1/\pi^2$, J. Approx. Theory 160 (2009), 135-153. MR 2558018
  • 4. N.  D.  Baruah, B. C. Berndt, H. H. Chan, Ramanujan's series for $ 1/\pi$: a survey, Amer. Math. Monthly 116 (2009), 567-587.
  • 5. B. C. Berndt, Ramanujan's Notebooks, Part V, Springer-Verlag, New York, 1998. MR 1486573 (99f:11024)
  • 6. N.  D.  Baruah, N. Saikia, Some new explicit values of Ramanujan's continued fractions, Indian  J.  Math., 46 (2004), 357-371. MR 2133498 (2006i:33019)
  • 7. B. C. Berndt, S. Bhargava, F. G. Garvan, Ramanujan's theories of elliptic functions to alternative bases, Trans. Amer. Math. Soc., 347 (1995), 4136-4244. MR 1311903 (97h:33034)
  • 8. J. M. Borwein, P. B. Borwein, Pi and the AGM; A Study in Analytic Number Theory and Computational Complexity, Wiley, New York, 1987. MR 877728 (89a:11134)
  • 9. J. M. Borwein, P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), 691-701. MR 1010408 (91e:33012)
  • 10. H. H. Chan, On Ramanujan's cubic transformation formula for $ _2F_1~(1/3, 2/3; 1; z)$, Math. Proc. Cambridge Philos. Soc., 124 (1998), 193-204. MR 1631107 (99f:11054)
  • 11. H. H. Chan, W. -C. Liaw, Cubic modular equations and new Ramanujan-type series for $ 1/\pi$, Pacific J. Math 343 (2000), 219-238 . MR 1744566 (2001e:11041)
  • 12. H. H. Chan, W. -C. Liaw, V. Tan, Ramanujan's class invariant $ \lambda_n$ and a new class of series for $ 1/\pi$, London Math. Soc.(2), 64 (2001), 93-106. MR 1840773 (2002d:33028)
  • 13. K. G. Ramanathan, Some applications of Kronecker limit formula, J. Indian Math. Soc., 52 (1987), 71-89. MR 989231 (90j:11112)
  • 14. S. Ramanujan, Modular equations and approximations to $ \pi$, Quart. J. Math. (Oxford) 45 (1914), 350-372.
  • 15. S. Ramanujan, Collected Papers, Cambridge Univ. Press, Cambridge, 1927; reprinted by Chelsea, New York, 1962; reprinted by Amer. Math. Soc., Providence, RI, 2000.
  • 16. S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904 (20:6340)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 33C05, 33E05, 11F11, 11R29

Retrieve articles in all journals with MSC (2010): 33C05, 33E05, 11F11, 11R29


Additional Information

Nayandeep Deka Baruah
Affiliation: Department of Mathematical Sciences, Tezpur University, Sonitpur, Pin-784028, India
Email: nayan@tezu.ernet.in

Narayan Nayak
Affiliation: Department of Mathematical Sciences, Tezpur University, Sonitpur, Pin-784028, India
Email: narayan.nayak05@gmail.com

DOI: https://doi.org/10.1090/S0002-9947-2010-05180-3
Keywords: Hypergeometric series, cubic theta functions, cubic modular equations, Eisenstein series
Received by editor(s): April 13, 2009
Published electronically: August 24, 2010
Dedicated: Dedicated to Professor Bruce C. Berndt on the occasion of his 70th birthday
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society