Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Nonsymmetric conical upper density and $ k$-porosity


Authors: Antti Käenmäki and Ville Suomala
Journal: Trans. Amer. Math. Soc. 363 (2011), 1183-1195
MSC (2000): Primary 28A75; Secondary 28A78, 28A80
DOI: https://doi.org/10.1090/S0002-9947-2010-04869-X
Published electronically: October 21, 2010
MathSciNet review: 2737262
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study how the Hausdorff measure is distributed in nonsymmetric narrow cones in $ \mathbb{R}^n$. As an application, we find an upper bound close to $ n-k$ for the Hausdorff dimension of sets with large $ k$-porosity. With $ k$-porous sets we mean sets which have holes in $ k$ different directions on every small scale.


References [Enhancements On Off] (What's this?)

  • 1. P. Erdős and Z. Füredi.
    The greatest angle among $ n$ points in the $ d$-dimensional Euclidean space.
    North-Holland Math. Stud., 75:275-283, 1983. MR 0841305 (87g:52018)
  • 2. K. J. Falconer.
    Geometry of Fractal Sets.
    Cambridge University Press, Cambridge, 1985. MR 867284 (88d:28001)
  • 3. J. E. Hutchinson.
    Fractals and self-similarity.
    Indiana Univ. Math. J., 30(5):713-747, 1981. MR 625600 (82h:49026)
  • 4. E. Järvenpää and M. Järvenpää.
    Porous measures on $ \mathbb{R}^n$: Local structure and dimensional properties.
    Proc. Amer. Math. Soc., 130(2):419-426, 2002. MR 1862121 (2002h:28001)
  • 5. E. Järvenpää, M. Järvenpää, A. Käenmäki, T. Rajala, S. Rogovin, and V. Suomala.
    Packing dimension and Ahlfors regularity of porous sets in metric spaces.
    Math. Z., 266(1):83-105, 2010.
  • 6. E. Järvenpää, M. Järvenpää, A. Käenmäki, and V. Suomala.
    Asympotically sharp dimension estimates for $ k$-porous sets.
    Math. Scand., 97(2):309-318, 2005. MR 2191709 (2006j:28016)
  • 7. A. Käenmäki.
    On natural invariant measures on generalised iterated function systems.
    Ann. Acad. Sci. Fenn. Math, 29(2):419-458, 2004. MR 2097242 (2005g:37044)
  • 8. A. Käenmäki and V. Suomala.
    Conical upper density theorems and porosity of measures.
    Adv. Math., 217(3):952-966, 2008. MR 2383891
  • 9. P. Koskela and S. Rohde.
    Hausdorff dimension and mean porosity.
    Math. Ann., 309:593-609, 1997. MR 1483825 (98k:28004)
  • 10. O. Martio and M. Vuorinen.
    Whitney cubes, $ p$-capacity, and Minkowski content.
    Exposition. Math., 5(1):17-40, 1987. MR 880256 (88e:28004)
  • 11. P. Mattila.
    Distribution of sets and measures along planes.
    J. London Math. Soc. (2), 38(1):125-132, 1988. MR 949087 (89f:28019)
  • 12. P. Mattila.
    Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability.
    Cambridge University Press, Cambridge, 1999. MR 1333890 (96h:28006)
  • 13. A. Salli.
    Upper density properties of Hausdorff measures on fractals.
    Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes No. 55, 1985. MR 809031 (87c:28019)
  • 14. A. Salli.
    On the Minkowski dimension of strongly porous fractal sets in $ \mathbb{R}^n$.
    Proc. London Math. Soc. (3), 62(2):353-372, 1991. MR 1085645 (91m:28008)
  • 15. J. Sarvas.
    The Hausdorff dimension of the branch set of a quasiregular mapping.
    Ann. Acad. Sci. Fenn. Ser. A I Math., 1(2):297-307, 1975. MR 0396945 (53:805)
  • 16. V. Suomala.
    On the conical density properties of measures on $ \mathbb{R}^n$.
    Math. Proc. Cambridge Philos. Soc., 138(3):493-512, 2005. MR 2138576 (2006f:28006)
  • 17. D. A. Trocenko.
    Properties of regions with a nonsmooth boundary.
    Sibirsk. Mat. Zh., 22(4):221-224, 1981. MR 624419 (82h:30015)
  • 18. J. Väisälä.
    Porous sets and quasisymmetric maps.
    Trans. Amer. Math. Soc., 299(2):525-533, 1987. MR 869219 (88a:30049)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 28A75, 28A78, 28A80

Retrieve articles in all journals with MSC (2000): 28A75, 28A78, 28A80


Additional Information

Antti Käenmäki
Affiliation: Department of Mathematics and Statistics, P.O. Box 35 (MaD), FI-40014 University of Jyväskylä, Finland
Email: antti.kaenmaki@jyu.fi

Ville Suomala
Affiliation: Department of Mathematics and Statistics, P.O. Box 35 (MaD), FI-40014 University of Jyväskylä, Finland
Email: ville.suomala@jyu.fi

DOI: https://doi.org/10.1090/S0002-9947-2010-04869-X
Keywords: Conical density, porosity, Hausdorff dimension.
Received by editor(s): May 1, 2004
Received by editor(s) in revised form: July 4, 2008
Published electronically: October 21, 2010
Additional Notes: The first author acknowledges the support of the Academy of Finland (project #114821)
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society