Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The number of cliques in graphs of given order and size


Author: V. Nikiforov
Journal: Trans. Amer. Math. Soc. 363 (2011), 1599-1618
MSC (2010): Primary 05C35
DOI: https://doi.org/10.1090/S0002-9947-2010-05189-X
Published electronically: October 22, 2010
MathSciNet review: 2737279
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k_{r}\left(n,m\right) $ denote the minimum number of $ r$-cliques in graphs with $ n$ vertices and $ m$ edges. For $ r=3,4$ we give a lower bound on $ k_{r}\left(n,m\right) $ that approximates $ k_{r}\left(n,m\right) $ with an error smaller than $ n^{r}/\left(n^{2}-2m\right).$

The solution is based on a constraint minimization of certain multilinear forms. Our proof combines a combinatorial strategy with extensive analytical arguments.


References [Enhancements On Off] (What's this?)

  • 1. C. Borgs, J. Chayes, L. Lovász, V. T. Sós, K. Vesztergombi, Counting Graph Homomorphisms, in Topics in discrete mathematics (Eds. M. Klazar, J. Kratochvíl, M. Loebl, J. Matoušek, R. Thomas, and P. Valtr), Algorithms and Combinatorics, 26. Springer-Verlag, Berlin, 2006, pp. 315-371. MR 2249277 (2007f:05087)
  • 2. B. Bollobás, On complete subgraphs of different orders, Math. Proc. Cambridge Philos. Soc. 79 (1976), 19-24. MR 0424614 (54:12573)
  • 3. B. Bollobás, Extremal Graph Theory, Academic Press Inc., London-New York, 1978, xx+488 pp. MR 506522 (80a:05120)
  • 4. B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184, Springer-Verlag, New York (1998). MR 1633290 (99h:05001)
  • 5. P. Erdős, On a theorem of Rademacher-Turán, Illinois J. Math. 6 (1962), 122-127. MR 0137661 (25:1111)
  • 6. P. Erdős, On the number of complete subgraphs and circuits contained in graphs, Časopis Pěst. Mat. 94 (1969), 290-296. MR 0252253 (40:5474)
  • 7. D.C. Fisher, Lower bounds on the number of triangles in a graph, J. Graph Theory 13 (1989), 505-512. MR 1010583 (90j:05078)
  • 8. L. Lovász, M. Simonovits, On the number of complete subgraphs of a graph II, Studies in pure mathematics, pp. 459-495, Birkhäuser, Basel, 1983. MR 820244 (87a:05089)
  • 9. L. Lovász, Very large graphs, Current developments in mathematics, 2008, pp. 67-128, Int. Press, Somerville, MA, 2009. MR 2555927
  • 10. A. Razborov, Flag Algebras, J. Symbolic Logic 72 (2007), 1239-1282. MR 2371204 (2008j:03040)
  • 11. A. Razborov, On the minimal density of triangles in graphs, Combin. Probab. Comput. 17 (2008), 603-618. MR 2433944 (2009i:05118)
  • 12. P. Turán, On an extremal problem in graph theory (in Hungarian), $ \emph{Mat.}$ és Fiz. Lapok 48 (1941) 436-452.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 05C35

Retrieve articles in all journals with MSC (2010): 05C35


Additional Information

V. Nikiforov
Affiliation: Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee 38152
Email: vnikifrv@memphis.edu

DOI: https://doi.org/10.1090/S0002-9947-2010-05189-X
Received by editor(s): April 5, 2009
Received by editor(s) in revised form: August 18, 2009
Published electronically: October 22, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society