Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Bergman projection and weighted $ C^k$ estimates for the canonical solution to the $ \bar{\partial}$ problem on non-smooth domains


Author: Dariush Ehsani
Journal: Trans. Amer. Math. Soc. 363 (2011), 3959-3975
MSC (2010): Primary 32A25, 32W05
DOI: https://doi.org/10.1090/S0002-9947-2011-05277-3
Published electronically: March 10, 2011
MathSciNet review: 2792975
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We apply integral representations for functions on non-smooth strictly pseudoconvex domains, the Henkin-Leiterer domains, to derive weighted $ C^k$-estimates for the component of a given function, $ f$, which is orthogonal to holomorphic functions in terms of $ C^k$-norms of $ \bar{\partial} f$. The weights are powers of the gradient of the defining function of the domain.


References [Enhancements On Off] (What's this?)

  • 1. D. Ehsani.
    Integral representations on non-smooth domains.
    Illinois J. Math., 53(4):1127-1156, 2010.
  • 2. D. Ehsani.
    Weighted $ C^k$ estimates for a class of integral operators on non-smooth domains.
    Mich. Math. Jornal, 59(3):589-620.
  • 3. D. Ehsani and I. Lieb.
    $ L^p$-estimates for the Bergman projection on strictly pseudoconvex non-smooth domains.
    Math. Nach., 281:913-1062, 2008. MR 2431567 (2009h:32003)
  • 4. G. Henkin and J. Leiterer.
    Theory of Functions on Complex Manifolds.
    Monographs in Math., vol. 79, Birkhäuser, Basel, 1984. MR 0774049 (86a:32002)
  • 5. L. Hörmander.
    $ {L}^2$ estimates and existence theorems for the $ \bar{\partial}$ operator.
    Acta. Math., 113:89-152, 1965. MR 0179443 (31:3691)
  • 6. I. Lieb and J. Michel.
    The Cauchy-Riemann complex, volume E 34 of Aspects of Mathematics.
    Vieweg, Wiesbaden, 2002. MR 1900133 (2003b:32008)
  • 7. I. Lieb and R. Range.
    Integral representations and estimates in the theory of the $ \bar{\partial}$-Neumann problem.
    Ann. of Math. (2), 123:265-301, 1986. MR 835763 (88j:32022a)
  • 8. R. M. Range.
    Holomorphic functions and integral representations in several complex variables, volume 108 of Graduate Texts in Mathematics.
    Springer, Berlin, 1986. MR 847923 (87i:32001)
  • 9. G. Schmalz.
    Solution of the $ \bar{\partial}$-equation with uniform estimates on strictly $ q$-convex domains with non-smooth boundary.
    Math. Z., 202:409-430, 1989. MR 1017581 (90k:32062)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32A25, 32W05

Retrieve articles in all journals with MSC (2010): 32A25, 32W05


Additional Information

Dariush Ehsani
Affiliation: Institut für Mathematik, Humboldt-Universität, 10099 Berlin, Germany
Email: dehsani.math@gmail.com

DOI: https://doi.org/10.1090/S0002-9947-2011-05277-3
Received by editor(s): March 15, 2009
Published electronically: March 10, 2011
Additional Notes: This reasearch was partially supported by the Alexander von Humboldt Stiftung
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society