Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

On the uniqueness of the helicoid and Enneper's surface in the Lorentz-Minkowski space $ \mathbb{R}_1^3$


Authors: Isabel Fernandez and Francisco J. Lopez
Journal: Trans. Amer. Math. Soc. 363 (2011), 4603-4650
MSC (2000): Primary 53A10; Secondary 53C42, 53C50
Published electronically: April 20, 2011
MathSciNet review: 2806686
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we deal with the uniqueness of the Lorentzian helicoid and Enneper's surface among properly embedded maximal surfaces with lightlike boundary of mirror symmetry in the Lorentz-Minkowski space $ \mathbb{R}_1^3.$


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53A10, 53C42, 53C50

Retrieve articles in all journals with MSC (2000): 53A10, 53C42, 53C50


Additional Information

Isabel Fernandez
Affiliation: Departamento de Matematica Aplicada I, Facultad de Informática, Universidad de Sevilla, 41012, Sevilla, Spain
Email: isafer@us.es

Francisco J. Lopez
Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
Email: fjlopez@ugr.es

DOI: http://dx.doi.org/10.1090/S0002-9947-2011-05133-0
PII: S 0002-9947(2011)05133-0
Keywords: Maximal surface, multigraph.
Received by editor(s): August 7, 2008
Received by editor(s) in revised form: June 9, 2009
Published electronically: April 20, 2011
Additional Notes: The first author’s research was partially supported by MCYT-FEDER research project MTM2007-64504, and Junta de Andalucia Grants P06-FQM-01642 and FQM325.
The second author’s research was partially supported by MCYT-FEDER research project MTM2007-61775 and Junta de Andalucia Grant P06-FQM-01642.
Article copyright: © Copyright 2011 American Mathematical Society