Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent

Authors:
Zongming Guo and Juncheng Wei

Journal:
Trans. Amer. Math. Soc. **363** (2011), 4777-4799

MSC (2010):
Primary 35B33; Secondary 35B32, 35J61

DOI:
https://doi.org/10.1090/S0002-9947-2011-05292-X

Published electronically:
March 25, 2011

MathSciNet review:
2806691

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the nonlinear eigenvalue problem

**1.**H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,*Comm. Pure Appl. Math.*36 (1983), 437-477. MR**709644 (84h:35059)****2.**C. Budd and J. Norbury, Semilinear elliptic equations and supercritical growth,*J. Differential Equations*68 (1987), 169-197. MR**892022 (88i:35056)****3.**B. Buffoni, E. N. Dancer and J. Toland, The subharmonic bifurcation of Stokes waves,*Arch. Rational Mech. Anal.*152 (2000), 241-271. MR**1764946 (2002e:76010b)****4.**E. N. Dancer, Infinitely many turning points for some supercritical problems,*Ann. Math. Pura Appl.*178 (2000), 225-233. MR**1849387 (2002g:35077)****5.**M. del Pino, J. Dolbeault and M. Musso, ``Bubble-tower'' radial solutions in the slightly supercritical Brezis-Nirenberg problem,*J. Differential Equations*193 (2003), 280-306. MR**1998635 (2004h:35077)****6.**J. Dolbeault and I. Flores, Geometry of phase space and solutions of semilinear elliptic equations in a ball,*Trans. Amer. Math. Soc.*359 (2007), 4073-4087. MR**2309176 (2008g:35054)****7.**M. Fila, M. Winkler and E. Yanagida, Convergence rate for a parabolic equation with supercritical nonlinearity,*J. Dynam. Diff. Eqns.*17 (2005), no. 2, 249-269. MR**2157459 (2006c:35131)****8.**B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,*Comm. Math. Phys.*68 (1979), 209-243. MR**544879 (80h:35043)****9.**C. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in ,*Comm. Pure Appl. Math.*45 (1992), 1153-1181. MR**1177480 (93h:35095)****10.**D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources,*Arch. Rational Mech. Anal.*49 (1973), 241-269. MR**0340701 (49:5452)****11.**F. Merle and L. A. Peletier, Positive solutions of elliptic equations involving supercritical gowth,*Proc. R. Soc. Edinburgh*118A (1991), 49-62. MR**1113842 (92g:35074)****12.**F. Merle, L. A. Peletier and J. Serrin, A bifurcation problem at a singular limit,*Indiana Univ. Math. J.*43 (1994), 585-609. MR**1291530 (95j:35024)****13.**P. Polacik and E. Yanagida, A Liouville property and quasiconvergence for a semilinear heat equation,*J. Diff. Eqns.*208 (2005), no. 1, 194-214. MR**2107299 (2005j:35109)****14.**C. K. Qu and R. Wong, ``Best possible'' upper and lower bounds for the zeros of the Bessel function ,*Trans. Amer. Math. Soc.*351 (1999), 2833-2859. MR**1466955 (99j:33006)****15.**P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems,*Indiana Univ. Math. J.*23 (1974), 729-754. MR**0333442 (48:11767)****16.**X. Wang, On the Cauchy problem for reaction-diffusion equations,*Trans. Amer. Math. Soc.*337 (1993), 549-590. MR**1153016 (93h:35106)****17.**L. Zhang, Uniqueness of positive solutions of in a ball,*Comm. PDEs*17 (1992), no. 7-8, 1141-1164. MR**1179281 (94b:35125)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
35B33,
35B32,
35J61

Retrieve articles in all journals with MSC (2010): 35B33, 35B32, 35J61

Additional Information

**Zongming Guo**

Affiliation:
Department of Mathematics, Henan Normal University, Xinxiang, 453007, People’s Republic of China

Email:
gzm@htu.cn

**Juncheng Wei**

Affiliation:
Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

Email:
wei@math.cuhk.edu.hk

DOI:
https://doi.org/10.1090/S0002-9947-2011-05292-X

Keywords:
Branch of positive radial solutions,
infinitely many turning points,
Morse index,
semilinear elliptic problems with super-critical exponent,
Bessel function

Received by editor(s):
March 31, 2009

Received by editor(s) in revised form:
November 5, 2009

Published electronically:
March 25, 2011

Article copyright:
© Copyright 2011
American Mathematical Society