Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the pointwise implementation of near-actions


Author: Asger Törnquist
Journal: Trans. Amer. Math. Soc. 363 (2011), 4929-4944
MSC (2010): Primary 03E15, 37A05
DOI: https://doi.org/10.1090/S0002-9947-2011-05296-7
Published electronically: March 4, 2011
MathSciNet review: 2806696
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the continuum hypothesis implies that every measure preserving near-action of a group on a standard Borel probability space $ (X,\mu)$ has a pointwise implementation by Borel measure preserving automorphisms.


References [Enhancements On Off] (What's this?)

  • 1. T. Carlson, R. Frankiewicz, and P. Zbierski, Borel liftings of the measure algebra and the failure of the continuum hypothesis, Proceedings of the American Mathematical Society 120 (1994), 1247-1250. MR 1176066 (94f:03058)
  • 2. I. Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Memoirs of the American Mathematical Society 148 (2000), no. 702. MR 1711328 (2001c:03076)
  • 3. -, Rigidity conjectures, Lecture Notes in Logic, no. 19, Association for Symbolic Logic, 2005. MR 2143881 (2006j:03062)
  • 4. -, All automorphisms of the Calkin algebra are inner, to appear in Annals of Math.
  • 5. D. Fremlin, Problems, http://www.essex.ac.uk/maths/staff/fremlin/problems.pdf.
  • 6. -, Measure theory, vol. 3. Measure algebras (2nd printing), Torres Fremlin, 2004. MR 2459668
  • 7. E. Glasner, B. Tsirelson, and B. Weiss, The automorphism group of the Gaussian measure cannot act pointwise, Israel Journal of Mathematics 148 (2005), 305-329. MR 2191233 (2006i:37008)
  • 8. E. Glasner and B. Weiss, Spatial and non-spatial actions of Polish groups, Ergodic Theory and Dynamical Systems 25 (2005), 1521-1538. MR 2173431 (2006h:37003)
  • 9. P. Halmos, Lectures on ergodic theory, Chelsea Publishing Co., 1956. MR 0097489 (20:3958)
  • 10. T. Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, 2003. MR 1940513 (2004g:03071)
  • 11. A. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, no. 156, Springer-Verlag, 1995. MR 1321597 (96e:03057)
  • 12. K. Kunen, Set theory, an introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, no. 102, North-Holland Publishing Co., 1980. MR 597342 (82f:03001)
  • 13. A. Kwiatkowska and S. Solecki, Spatial models of boolean actions and groups of isometries, to appear in Ergodic Theory and Dynamical Systems.
  • 14. G.W. Mackey, Point realizations of transformation groups, Illinois Journal of Mathematics 6 (1962), 327-335. MR 0143874 (26:1424)
  • 15. D. Maharam, On a theorem of von Neumann, Proceedings of the American Mathematical Society 9 (1958), 987-994. MR 0105479 (21:4220)
  • 16. Y. N. Moschovakis, Descriptive set theory, North-Holland Publishing Co., 1980. MR 561709 (82e:03002)
  • 17. C.N. Phillips and N. Weaver, The Calkin algebra has outer automorphisms, Duke Mathematics Journal 139 (2007), no. 1, 185-202. MR 2322680 (2009a:46123)
  • 18. S. Shelah, Lifting problem of the measure algebra, Israel Journal of Mathematics 45 (1983), 90-96. MR 710248 (85b:03092)
  • 19. -, Proper and improper forcing, second ed., Springer-Verlag, 1998. MR 1623206 (98m:03002)
  • 20. S. Shelah and J. Steprans, PFA implies all automorphisms are trivial, Proceedings of the American Mathematical Society 104 (1988), 1220-1225. MR 935111 (89e:03080)
  • 21. B. Velickovic, OCA and automorphisms of $ {\mathcal P}(\omega)/{\rm fin}$, Topology and its Applications 49 (1993), no. 1, 1-13. MR 1202874 (94a:03080)
  • 22. J. von Neumann and M.H. Stone, The determination of representative elements in the residual classes of a boolean algebra, Fundamenta Mathematicae 25 (1935), 353-378.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 03E15, 37A05

Retrieve articles in all journals with MSC (2010): 03E15, 37A05


Additional Information

Asger Törnquist
Affiliation: Kurt Gödel Research Center, University of Vienna, Währinger Strasse 25, 1090 Vienna, Austria
Email: asger@logic.univie.ac.at

DOI: https://doi.org/10.1090/S0002-9947-2011-05296-7
Keywords: Ergodic theory, near-actions, spatial actions, descriptive set theory
Received by editor(s): October 4, 2009
Received by editor(s) in revised form: January 19, 2010
Published electronically: March 4, 2011
Additional Notes: This research was supported by the Austrian Science Foundation FWF grant no. P19375-N18.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society