On the pointwise implementation of near-actions

Author:
Asger Törnquist

Journal:
Trans. Amer. Math. Soc. **363** (2011), 4929-4944

MSC (2010):
Primary 03E15, 37A05

DOI:
https://doi.org/10.1090/S0002-9947-2011-05296-7

Published electronically:
March 4, 2011

MathSciNet review:
2806696

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the continuum hypothesis implies that every measure preserving near-action of a group on a standard Borel probability space has a pointwise implementation by Borel measure preserving automorphisms.

**1.**T. Carlson, R. Frankiewicz, and P. Zbierski,*Borel liftings of the measure algebra and the failure of the continuum hypothesis*, Proceedings of the American Mathematical Society**120**(1994), 1247-1250. MR**1176066 (94f:03058)****2.**I. Farah,*Analytic quotients: theory of liftings for quotients over analytic ideals on the integers*, Memoirs of the American Mathematical Society**148**(2000), no. 702. MR**1711328 (2001c:03076)****3.**-,*Rigidity conjectures*, Lecture Notes in Logic, no. 19, Association for Symbolic Logic, 2005. MR**2143881 (2006j:03062)****4.**-,*All automorphisms of the Calkin algebra are inner*, to appear in Annals of Math.**5.**D. Fremlin,*Problems*, http://www.essex.ac.uk/maths/staff/fremlin/problems.pdf.**6.**-,*Measure theory, vol. 3. Measure algebras (2nd printing)*, Torres Fremlin, 2004. MR**2459668****7.**E. Glasner, B. Tsirelson, and B. Weiss,*The automorphism group of the Gaussian measure cannot act pointwise*, Israel Journal of Mathematics**148**(2005), 305-329. MR**2191233 (2006i:37008)****8.**E. Glasner and B. Weiss,*Spatial and non-spatial actions of Polish groups*, Ergodic Theory and Dynamical Systems**25**(2005), 1521-1538. MR**2173431 (2006h:37003)****9.**P. Halmos,*Lectures on ergodic theory*, Chelsea Publishing Co., 1956. MR**0097489 (20:3958)****10.**T. Jech,*Set theory*, Springer Monographs in Mathematics, Springer-Verlag, 2003. MR**1940513 (2004g:03071)****11.**A. Kechris,*Classical descriptive set theory*, Graduate Texts in Mathematics, no. 156, Springer-Verlag, 1995. MR**1321597 (96e:03057)****12.**K. Kunen,*Set theory, an introduction to independence proofs*, Studies in Logic and the Foundations of Mathematics, no. 102, North-Holland Publishing Co., 1980. MR**597342 (82f:03001)****13.**A. Kwiatkowska and S. Solecki,*Spatial models of boolean actions and groups of isometries*, to appear in Ergodic Theory and Dynamical Systems.**14.**G.W. Mackey,*Point realizations of transformation groups*, Illinois Journal of Mathematics**6**(1962), 327-335. MR**0143874 (26:1424)****15.**D. Maharam,*On a theorem of von Neumann*, Proceedings of the American Mathematical Society**9**(1958), 987-994. MR**0105479 (21:4220)****16.**Y. N. Moschovakis,*Descriptive set theory*, North-Holland Publishing Co., 1980. MR**561709 (82e:03002)****17.**C.N. Phillips and N. Weaver,*The Calkin algebra has outer automorphisms*, Duke Mathematics Journal**139**(2007), no. 1, 185-202. MR**2322680 (2009a:46123)****18.**S. Shelah,*Lifting problem of the measure algebra*, Israel Journal of Mathematics**45**(1983), 90-96. MR**710248 (85b:03092)****19.**-,*Proper and improper forcing*, second ed., Springer-Verlag, 1998. MR**1623206 (98m:03002)****20.**S. Shelah and J. Steprans,*PFA implies all automorphisms are trivial*, Proceedings of the American Mathematical Society**104**(1988), 1220-1225. MR**935111 (89e:03080)****21.**B. Velickovic,*OCA and automorphisms of*, Topology and its Applications**49**(1993), no. 1, 1-13. MR**1202874 (94a:03080)****22.**J. von Neumann and M.H. Stone,*The determination of representative elements in the residual classes of a boolean algebra*, Fundamenta Mathematicae**25**(1935), 353-378.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
03E15,
37A05

Retrieve articles in all journals with MSC (2010): 03E15, 37A05

Additional Information

**Asger Törnquist**

Affiliation:
Kurt Gödel Research Center, University of Vienna, Währinger Strasse 25, 1090 Vienna, Austria

Email:
asger@logic.univie.ac.at

DOI:
https://doi.org/10.1090/S0002-9947-2011-05296-7

Keywords:
Ergodic theory,
near-actions,
spatial actions,
descriptive set theory

Received by editor(s):
October 4, 2009

Received by editor(s) in revised form:
January 19, 2010

Published electronically:
March 4, 2011

Additional Notes:
This research was supported by the Austrian Science Foundation FWF grant no. P19375-N18.

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.