Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ k$-Parabolic subspace arrangements


Authors: Hélène Barcelo, Christopher Severs and Jacob A. White
Journal: Trans. Amer. Math. Soc. 363 (2011), 6063-6083
MSC (2010): Primary 52C35, 05E99
DOI: https://doi.org/10.1090/S0002-9947-2011-05336-5
Published electronically: June 17, 2011
MathSciNet review: 2817419
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study $ k$-parabolic arrangements, a generalization of $ k$-equal arrangements for finite real reflection groups. When $ k=2$, these arrangements correspond to the well-studied Coxeter arrangements. Brieskorn (1971) showed that the fundamental group of the complement, over $ \mathbb{C}$, of the type $ W$ Coxeter arrangement is isomorphic to the pure Artin group of type $ W$. Khovanov (1996) gave an algebraic description for the fundamental group of the complement, over $ \mathbb{R}$, of the $ 3$-equal arrangement. We generalize Khovanov's result to obtain an algebraic description of the fundamental groups of the complements of $ 3$-parabolic arrangements for arbitrary finite reflection groups. Our description is a real analogue to Brieskorn's description.


References [Enhancements On Off] (What's this?)

  • 1. Vladimir I. Arnold, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227-231. MR 0242196 (39:3529)
  • 2. William A. Arvola, The fundamental group of the complement of an arrangement of complex hyperplanes, Topology 31 (1992), no. 4, 757-765. MR 1191377 (93k:32078)
  • 3. Eric Babson, Hélène Barcelo, Mark de Longueville, and Reinhard Laubenbacher, Homotopy theory of graphs, J. Algebraic Combin. 24 (2006), no. 1, 31-44. MR 2245779 (2007d:05156)
  • 4. Hélène Barcelo and Edwin Ihrig, Lattices of parabolic subgroups in connection with hyperplane arrangements, J. Algebraic Combin. 9 (1999), no. 1, 5-24. MR 1676736 (2000g:52023)
  • 5. Hélène Barcelo, Xenia Kramer, Reinhard Laubenbacher, and Christopher Weaver, Foundations of a connectivity theory for simplicial complexes, Adv. in Appl. Math. 26 (2001), no. 2, 97-128. MR 1808443 (2001k:57029)
  • 6. Hélène Barcelo and Reinhard Laubenbacher, Perspectives on $ A$-homotopy theory and its applications, Discrete Math. 298 (2005), no. 1-3, 39-61. MR 2163440 (2006f:52017)
  • 7. Hélène Barcelo and Shelly Smith, The discrete fundamental group of the order complex of $ B\sb n$, J. Algebraic Combin. 27 (2008), no. 4, 399-421. MR 2393249
  • 8. Anders Björner, Personal communication, 1999.
  • 9. Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266 (2006d:05001)
  • 10. Anders Björner and Bruce E. Sagan, Subspace arrangements of type $ B\sb n$ and $ D\sb n$, J. Algebraic Combin. 5 (1996), no. 4, 291-314. MR 1406454 (97g:52028)
  • 11. Anders Björner and Volkmar Welker, The homology of ``$ k$-equal'' manifolds and related partition lattices, Adv. Math. 110 (1995), no. 2, 277-313. MR 1317619 (95m:52029)
  • 12. Anders Björner and Günter M. Ziegler, Combinatorial stratification of complex arrangements, J. Amer. Math. Soc. 5 (1992), no. 1, 105-149. MR 1119198 (92k:52022)
  • 13. Egbert Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57-61. MR 0293615 (45:2692)
  • 14. Michael Davis, Tadeusz Januszkiewicz, and Richard Scott, Nonpositive curvature of blow-ups, Selecta Math. (N.S.) 4 (1998), no. 4, 491-547. MR 1668119 (2001f:53078)
  • 15. Pierre Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302. MR 0422673 (54:10659)
  • 16. Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118. MR 0141126 (25:4537)
  • 17. Eva Maria Feichtner and Dmitry N. Kozlov, On subspace arrangements of type $ D$, Discrete Math. 210 (2000), no. 1-3, 27-54, Formal power series and algebraic combinatorics (Minneapolis, MN, 1996). MR 1731606 (2001k:52039)
  • 18. Ralph Fox and Lee Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126. MR 0150755 (27:742)
  • 19. Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724 (90d:57039)
  • 20. Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354 (2002k:55001)
  • 21. James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460 (92h:20002)
  • 22. Mikhail Khovanov, Real $ K(\pi,1)$ arrangements from finite root systems, Math. Res. Lett. 3 (1996), no. 2, 261-274. MR 1386845 (97d:52023)
  • 23. Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488 (94e:52014)
  • 24. Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MR 1311028 (96a:52011)
  • 25. Günter M. Ziegler and Rade T. Živaljević, Homotopy types of subspace arrangements via diagrams of spaces, Math. Ann. 295 (1993), no. 3, 527-548. MR 1204836 (94c:55018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 52C35, 05E99

Retrieve articles in all journals with MSC (2010): 52C35, 05E99


Additional Information

Hélène Barcelo
Affiliation: School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287 – and – Mathematical Sciences Research Institute, Berkeley, California 94720
Email: hbarcelo@msri.org

Christopher Severs
Affiliation: Mathematical Sciences Research Institute, Berkeley, California 94720
Address at time of publication: Department of Mathematics, Reykjavík University, Menntavegur 1, IS 101, Reykjavík, Iceland
Email: csevers@msri.org

Jacob A. White
Affiliation: School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287
Address at time of publication: Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, California 94720
Email: jacob.a.white@asu.edu, jawhite@msri.org

DOI: https://doi.org/10.1090/S0002-9947-2011-05336-5
Keywords: Subspace arrangement, Eilenberg-MacLane space, discrete homotopy theory, right-angled Coxeter group
Received by editor(s): September 3, 2009
Received by editor(s) in revised form: February 24, 2010
Published electronically: June 17, 2011
Additional Notes: The second author was partially supported by NSF grant DMS-0441170, administered by the Mathematical Sciences Research Institute, while the author was in residence during the Complementary Program, Fall 2009–Spring 2010. We thank the institute for its support.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society