Surfaces with parallel mean curvature vector in and

Authors:
Francisco Torralbo and Francisco Urbano

Journal:
Trans. Amer. Math. Soc. **364** (2012), 785-813

MSC (2010):
Primary 53A10; Secondary 53B35

Published electronically:
October 3, 2011

MathSciNet review:
2846353

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two holomorphic Hopf differentials for surfaces of non-null parallel mean curvature vector in and are constructed. A 1:1 correspondence between these surfaces and pairs of constant mean curvature surfaces of and is established. Using this, surfaces with vanishing Hopf differentials (in particular, spheres with parallel mean curvature vector) are classified and a rigidity result for constant mean curvature surfaces of and is proved.

**1.**Uwe Abresch and Harold Rosenberg,*A Hopf differential for constant mean curvature surfaces in 𝑆²×𝑅 and 𝐻²×𝑅*, Acta Math.**193**(2004), no. 2, 141–174. MR**2134864**, 10.1007/BF02392562**2.**Benoît Daniel,*Isometric immersions into 3-dimensional homogeneous manifolds*, Comment. Math. Helv.**82**(2007), no. 1, 87–131. MR**2296059**, 10.4171/CMH/86**3.**Paul F. Byrd and Morris D. Friedman,*Handbook of elliptic integrals for engineers and scientists*, Die Grundlehren der mathematischen Wissenschaften, Band 67, Springer-Verlag, New York-Heidelberg, 1971. Second edition, revised. MR**0277773****4.**Ildefonso Castro and Francisco Urbano,*Minimal Lagrangian surfaces in 𝕊²×𝕊²*, Comm. Anal. Geom.**15**(2007), no. 2, 217–248. MR**2344322****5.**Bang-yen Chen,*On the surface with parallel mean curvature vector*, Indiana Univ. Math. J.**22**(1972/73), 655–666. MR**0315606****6.**Shiu Yuen Cheng,*Eigenfunctions and nodal sets*, Comment. Math. Helv.**51**(1976), no. 1, 43–55. MR**0397805****7.**Isabel Fernández and Pablo Mira,*A characterization of constant mean curvature surfaces in homogeneous 3-manifolds*, Differential Geom. Appl.**25**(2007), no. 3, 281–289. MR**2330457**, 10.1016/j.difgeo.2006.11.006**8.**Dirk Ferus,*The torsion form of submanifolds in 𝐸^{𝑁}*, Math. Ann.**193**(1971), 114–120. MR**0287493****9.**Katsuei Kenmotsu and Detang Zhou,*The classification of the surfaces with parallel mean curvature vector in two-dimensional complex space forms*, Amer. J. Math.**122**(2000), no. 2, 295–317. MR**1749050****10.**Maria Luiza Leite,*An elementary proof of the Abresch-Rosenberg theorem on constant mean curvature immersed surfaces in 𝕊²×ℝ and ℍ²×ℝ*, Q. J. Math.**58**(2007), no. 4, 479–487. MR**2371467**, 10.1093/qmath/ham020**11.**Jorge H. S. De Lira and Feliciano A. Vitório,*Surfaces with constant mean curvature in Riemannian products*, Q. J. Math.**61**(2010), no. 1, 33–41. MR**2592022**, 10.1093/qmath/han030**12.**Takashi Ogata,*Surfaces with parallel mean curvature vector in 𝑃²(𝐂)*, Kodai Math. J.**18**(1995), no. 3, 397–407. MR**1362916**, 10.2996/kmj/1138043479**13.**Shing Tung Yau,*Submanifolds with constant mean curvature. I, II*, Amer. J. Math.**96**(1974), 346–366; ibid. 97 (1975), 76–100. MR**0370443**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
53A10,
53B35

Retrieve articles in all journals with MSC (2010): 53A10, 53B35

Additional Information

**Francisco Torralbo**

Affiliation:
Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain

Email:
ftorralbo@ugr.es

**Francisco Urbano**

Affiliation:
Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain

Email:
furbano@ugr.es

DOI:
https://doi.org/10.1090/S0002-9947-2011-05346-8

Received by editor(s):
December 30, 2008

Received by editor(s) in revised form:
October 27, 2009, and February 15, 2010

Published electronically:
October 3, 2011

Additional Notes:
This research was partially supported by an MCyT-Feder research project MTM2007-61775 and a Junta Andalucĭa Grant P06-FQM-01642.

Article copyright:
© Copyright 2011
American Mathematical Society