Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Beta-expansions, natural extensions and multiple tilings associated with Pisot units


Authors: Charlene Kalle and Wolfgang Steiner
Journal: Trans. Amer. Math. Soc. 364 (2012), 2281-2318
MSC (2010): Primary 11A63, 11R06, 28A80, 28D05, 37B10, 52C22, 52C23
DOI: https://doi.org/10.1090/S0002-9947-2012-05362-1
Published electronically: January 6, 2012
MathSciNet review: 2888207
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: From the works of Rauzy and Thurston, we know how to construct (multiple) tilings of some Euclidean space using the conjugates of a Pisot unit $ \beta $ and the greedy $ \beta $-transformation. In this paper, we consider different transformations generating expansions in base $ \beta $, including cases where the associated subshift is not sofic. Under certain mild conditions, we show that they give multiple tilings. We also give a necessary and sufficient condition for the tiling property, generalizing the weak finiteness property (W) for greedy $ \beta $-expansions. Remarkably, the symmetric $ \beta $-transformation does not satisfy this condition when $ \beta $ is the smallest Pisot number or the Tribonacci number. This means that the Pisot conjecture on tilings cannot be extended to the symmetric $ \beta $-transformation.

Closely related to these (multiple) tilings are natural extensions of the transformations, which have many nice properties: they are invariant under the Lebesgue measure; under certain conditions, they provide Markov partitions of the torus; they characterize the numbers with purely periodic expansion, and they allow determining any digit in an expansion without knowing the other digits.


References [Enhancements On Off] (What's this?)

  • [ABEI01] P. Arnoux, V. Berthé, H. Ei, and S. Ito.
    Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions.
    In Discrete models: combinatorics, computation, and geometry (Paris, 2001), Discrete Math. Theor. Comput. Sci. Proc., AA, pages 059-078 (electronic). Maison Inform. Math. Discrèt. (MIMD), Paris, 2001. MR 1888763 (2002k:37025)
  • [Aki99] S. Akiyama.
    Self affine tiling and Pisot numeration system.
    In Number theory and its applications (Kyoto, 1997), volume 2 of Dev. Math., pages 7-17. Kluwer Acad. Publ., Dordrecht, 1999. MR 1738803 (2001b:11094)
  • [Aki00] S. Akiyama.
    Cubic Pisot units with finite beta expansions.
    In Algebraic number theory and Diophantine analysis (Graz, 1998), pages 11-26. de Gruyter, Berlin, 2000. MR 1770451 (2001i:11095)
  • [Aki02] S. Akiyama.
    On the boundary of self affine tilings generated by Pisot numbers.
    J. Math. Soc. Japan, 54(2):283-308, 2002. MR 1883519 (2002k:11132)
  • [ARS04] S. Akiyama, H. Rao, and W. Steiner.
    A certain finiteness property of Pisot number systems.
    J. Number Theory, 107(1):135-160, 2004. MR 2059954 (2005g:11135)
  • [AS07] S. Akiyama and K. Scheicher.
    Symmetric shift radix systems and finite expansions.
    Math. Pannon., 18(1):101-124, 2007. MR 2321960 (2008d:11080)
  • [BBK06] V. Baker, M. Barge, and J. Kwapisz.
    Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $ \beta $-shifts.
    Ann. Inst. Fourier (Grenoble), 56(7):2213-2248, 2006. MR 2290779 (2010c:37034)
  • [Ber77] A. Bertrand.
    Développements en base de Pisot et répartition modulo $ 1$.
    C. R. Acad. Sci. Paris Sér. A-B, 285(6):A419-A421, 1977. MR 0447134 (56:5449)
  • [BS05] V. Berthé and A. Siegel.
    Tilings associated with beta-numeration and substitutions.
    Integers, 5(3):A2, 46 pp. (electronic), 2005. MR 2191748 (2006i:37039)
  • [DK02] K. Dajani and C. Kraaikamp.
    From greedy to lazy expansions and their driving dynamics.
    Expo. Math., 20(4):315-327, 2002. MR 1940010 (2003h:11089)
  • [DK08] K. Dajani and C. Kalle.
    A note on the greedy $ \beta $-transformation with arbitrary digits.
    SMF Sem. et Congres, 19:81-102, 2008.
  • [EJK90] P. Erdős, I. Joó, and V. Komornik.
    Characterization of the unique expansions $ 1=\sum \sp \infty \sb {i=1}q\sp {-n\sb i}$ and related problems.
    Bull. Soc. Math. France, 118(3):377-390, 1990. MR 1078082 (91j:11006)
  • [Fal97] K. Falconer.
    Techniques in fractal geometry.
    John Wiley & Sons Ltd., Chichester, 1997. MR 1449135 (99f:28013)
  • [FL96] L. Flatto and J. C. Lagarias.
    The lap-counting function for linear mod one transformations. I. Explicit formulas and renormalizability.
    Ergodic Theory Dynam. Systems, 16(3):451-491, 1996. MR 1395048 (97c:58122)
  • [FL97a] L. Flatto and J. C. Lagarias.
    The lap-counting function for linear mod one transformations. II. The Markov chain for generalized lap numbers.
    Ergodic Theory Dynam. Systems, 17(1):123-146, 1997. MR 1440771 (98e:58139)
  • [FL97b] L. Flatto and J. C. Lagarias.
    The lap-counting function for linear mod one transformations. III. The period of a Markov chain.
    Ergodic Theory Dynam. Systems, 17(2):369-403, 1997. MR 1444059 (98e:58140)
  • [FR08] N. P. Frank and E. A. Robinson, Jr.
    Generalized $ \beta $-expansions, substitution tilings, and local finiteness.
    Trans. Amer. Math. Soc., 360(3):1163-1177, 2008. MR 2357692 (2009g:52038)
  • [FS92] C. Frougny and B. Solomyak.
    Finite beta-expansions.
    Ergodic Theory Dynam. Systems, 12(4):713-723, 1992. MR 1200339 (94a:11123)
  • [FS08] C. Frougny and W. Steiner.
    Minimal weight expansions in Pisot bases.
    J. Math. Cryptol., 2(4):365-392, 2008. MR 2549463
  • [Hof81] F. Hofbauer.
    The maximal measure for linear mod one transformations.
    J. London Math. Soc. (2), 23(1):92-112, 1981. MR 602242 (82c:28040)
  • [Hol96] M. Hollander.
    Linear numeration systems, finite beta-expansions, and discrete spectrum of substitution dynamical systems.
    Ph.D. thesis, Washington University, 1996.
  • [IR05] S. Ito and H. Rao.
    Purely periodic $ \beta $-expansions with Pisot unit base.
    Proc. Amer. Math. Soc., 133(4):953-964, 2005. MR 2117194 (2005m:11198)
  • [IR06] S. Ito and H. Rao.
    Atomic surfaces, tilings and coincidence. I. Irreducible case.
    Israel J. Math., 153:129-155, 2006. MR 2254640 (2007i:37032)
  • [LM95] Douglas Lind and Brian Marcus.
    An introduction to symbolic dynamics and coding.
    Cambridge University Press, Cambridge, 1995. MR 1369092 (97a:58050)
  • [Mey72] Y. Meyer.
    Algebraic numbers and harmonic analysis.
    North-Holland Publishing Co., 1972. MR 0485769 (58:5579)
  • [Moo97] R. Moody.
    Meyer sets and their duals.
    In The mathematics of long-range aperiodic order (Waterloo, ON, 1995), volume 489 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 403-441. Kluwer Acad. Publ., 1997. MR 1460032 (98e:52029)
  • [MW88] R. D. Mauldin and S. C. Williams.
    Hausdorff dimension in graph directed constructions.
    Trans. Amer. Math. Soc., 309:811-829, 1988. MR 961615 (89i:28003)
  • [Par60] W. Parry.
    On the $ \beta $-expansions of real numbers.
    Acta Math. Acad. Sci. Hungar., 11:401-416, 1960. MR 0142719 (26:288)
  • [Ped05] M. Pedicini.
    Greedy expansions and sets with deleted digits.
    Theoret. Comput. Sci., 332(1-3):313-336, 2005. MR 2122508 (2005k:11013)
  • [Pra99] B. Praggastis.
    Numeration systems and Markov partitions from self-similar tilings.
    Trans. Amer. Math. Soc., 351(8):3315-3349, 1999. MR 1615950 (99m:11009)
  • [Rau82] G. Rauzy.
    Nombres algébriques et substitutions.
    Bull. Soc. Math. France, 110(2):147-178, 1982. MR 667748 (84h:10074)
  • [Roh61] V. A. Rohlin.
    Exact endomorphisms of a Lebesgue space.
    Izv. Akad. Nauk SSSR Ser. Mat., 25:499-530, 1961. MR 0143873 (26:1423)
  • [Sch80] K. Schmidt.
    On periodic expansions of Pisot numbers and Salem numbers.
    Bull. London Math. Soc., 12(4):269-278, 1980. MR 576976 (82c:12003)
  • [Sie04] A. Siegel.
    Pure discrete spectrum dynamical system and periodic tiling associated with a substitution.
    Ann. Inst. Fourier (Grenoble), 54(2):341-381, 2004. MR 2073838 (2005f:37024)
  • [Sol97] B. Solomyak.
    Dynamics of self-similar tilings.
    Ergodic Theory Dynam. Systems, 17(3):695-738, 1997. MR 1452190 (98f:52030)
  • [ST10] A. Siegel and J. Thuswaldner.
    Topological properties of Rauzy fractals.
    Mém. Soc. Math. Fr. (N.S.), No. 118 (2009), 140 pp. MR 2721985
  • [Ste02] W. Steiner.
    Parry expansions of polynomial sequences.
    Integers, 2:A14, 28 pp. (electronic), 2002. MR 1945950 (2003m:11119)
  • [Thu89] W. Thurston.
    Groups, tilings and finite state automata.
    AMS Colloquium lectures, 1989.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11A63, 11R06, 28A80, 28D05, 37B10, 52C22, 52C23

Retrieve articles in all journals with MSC (2010): 11A63, 11R06, 28A80, 28D05, 37B10, 52C22, 52C23


Additional Information

Charlene Kalle
Affiliation: Department of Mathematics, Utrecht University, Postbus 80.000, 3508 TA Utrecht, The Netherlands
Address at time of publication: Institute of Mathematics, Leiden University, Postbus 9512, 2300RA, Leiden, The Netherlands
Email: kallecccj@math.leidenuniv.nl

Wolfgang Steiner
Affiliation: LIAFA, CNRS, Université Paris Diderot – Paris 7, Case 7014, 75205 Paris Cedex 13, France
Email: steiner@liafa.jussieu.fr

DOI: https://doi.org/10.1090/S0002-9947-2012-05362-1
Received by editor(s): July 31, 2009
Received by editor(s) in revised form: January 26, 2010
Published electronically: January 6, 2012
Additional Notes: The first author was partly supported by the EU FP6 Marie Curie Research Training Network CODY (MRTN 2006 035651).
The second author was supported by the French Agence Nationale de la Recherche, grant ANR–06–JCJC–0073 “DyCoNum”.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society