Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Inverse spectral problem with partial information given on the potential and norming constants


Authors: Guangsheng Wei and Hong-Kun Xu
Journal: Trans. Amer. Math. Soc. 364 (2012), 3265-3288
MSC (2010): Primary 34A55; Secondary 34L40, 34L20
DOI: https://doi.org/10.1090/S0002-9947-2011-05545-5
Published electronically: November 7, 2011
MathSciNet review: 2888245
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The inverse spectral problem for a Sturm-Liouville equation in Liouville form with separated self-adjoint boundary conditions on the unit interval $ [0,1]$ is considered. Some uniqueness results are obtained which imply that the potential $ q$ can be completely determined even if only partial information is given on $ q$ together with partial information on the spectral data, consisting of either one full spectrum and a subset of norming constants or a subset of pairs of eigenvalues and the corresponding norming constants. Moreover, the problem of missing eigenvalues and norming constants is also investigated in the situation where the potential $ q$ is $ C^{2k-1}$ and the boundary conditions at the endpoints 0 and $ 1$ are fixed.


References [Enhancements On Off] (What's this?)

  • [1] Atkinson, F.V., On the location of the Weyl Circles, Proc. Roy. Soc. Edinburgh 88A, 1981, pp. 345-356. MR 616784 (83a:34023)
  • [2] Amour, L., and Raoux,T., Inverse spectral results for Schrödinger operators on the unit interval with potentials in $ L_p$ spaces, Inverse Probl. 23, 2007, pp. 23-67. MR 2441008 (2009f:34220)
  • [3] Amour, L., and Raoux,T., Inverse spectral results for Schrödinger operators on the unit interval with partial information given on the potentials, J. Math Phy., 50, 2009, 033505, pp. 1-14. MR 2510910 (2010g:81301)
  • [4] Borg, G., Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math., 78, 1946, pp. 1-96. MR 0015185 (7:382d)
  • [5] Borg, G., Uniqueness theorems in the spectral theory of 0, Proc. 11th Scandinavian Congr. Math. (Trondheim, 1949), Johan Grundt Tanums Forlag, Oslo, 1952, pp. 276-287. MR 0058063 (15:315a)
  • [6] Coleman, C.F., and McLaughlin, J.R., Solution of the inverse spectral problem for an impedance with integrable derivative. I, Comm. Pure Appl. Math., 46, 1993, pp. 145-184. MR 1199197 (93m:34017)
  • [7] Coleman, C.F., and McLaughlin,J.R., Solution of the inverse spectral problem for an impedance with integrable derivative. II, Comm. Pure Appl. Math., 46, 1993, pp. 185-212. MR 1199197 (93m:34017)
  • [8] Dahlberg, B., and Trubowitz, E., The inverse Sturm-Liouville problem. III. Comm. Pure Appl. Math., 37, 1984, pp. 255-267. MR 733718 (86f:34052)
  • [9] Danielyan, A., and Levitan, B.M., On the asymptotic behavior of the Weyl-Titchmarsh mfunction, Math. USSR Izv., 36, 1991, pp. 487-496. MR 1072691 (92d:34056)
  • [10] del Rio, R., Gesztesy, F., and Simon, B., Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions, Internat. Math. Res. Notices 15, 1997, pp. 751-758. MR 1470376 (99a:34032)
  • [11] Everitt, W.N., On a property of the m-coeffcient of a second-order linear differential equation, J. London Math. Soc., 4, 1972, pp. 443-457. MR 0298104 (45:7156)
  • [12] Freiling, G., and Yurko, V., Inverse Sturm-Liouville Problems and Their applications, Nova Science Publishers Inc., Huntington, 2001. MR 2094651 (2005f:34001)
  • [13] Gesztesy, F., and Simon B., m-functions and inverse spectral analysis for finite and semi-
    infinite Jacobi matrices,
    J. d'Analyse Math., 73, 1997, pp. 267-297. MR 1616422 (99c:47039)
  • [14] Gesztesy, F., and Simon B., Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators, Trans. Amer. Math. Soc., 348, 1996, pp. 349-373. MR 1329533 (96e:34030)
  • [15] Gesztesy, F., and Simon B., Inverse spectral analysis with partial information on the potential, I. The case of an a.c. component in the spectrum, Helv. Phys. Acta, 70, 1997, pp. 66-71. MR 1441597 (98f:81347)
  • [16] Gesztesy, F., and Simon B., Inverse spectral analysis with partial information on the potential, II. the case of discrete spectrum, Trans. Amer. Math. Soc., 352, 2000, pp. 2765-2787. MR 1694291 (2000j:34019)
  • [17] Hald, O.H. Inverse eigenvalue problem for the mantle, Geophys. J. R. Astr. Soc., 62, 1980, pp. 41-48.
  • [18] Hald, O.H., The Sturm-Liouville problem with symmetric potentials, Acta Math., 141, 1978, pp. 263-291. MR 505878 (80a:34022)
  • [19] Hochstadt, H., The inverse Sturm-Liouville problem, Commun. Pure Appl. Math., 26, 1973, pp. 715-729. MR 0330607 (48:8944)
  • [20] Hochstadt, H., and Lieberman, B., An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math., 34, 1978, pp. 676-680. MR 0470319 (57:10077)
  • [21] Isaacson, E., and Trubowitz, E., The inverse Sturm-Liouville problem. I. Comm. Pure Appl. Math., 36, 1983, pp. 767-783. MR 720593 (85d:34024)
  • [22] Isaacson, E., and McKean, H., and Trubowitz, E., The inverse Sturm-Liouville problem. II. Comm. Pure Appl. Math., 37, 1984, pp. 1-11. MR 728263 (86f:34051)
  • [23] Horvath, M., On the inverse spectral theory of Schrödinger and Dirac operators, Trans. Amer. Math. Soc., 353, 2001, pp. 4155-4171. MR 1837225 (2002e:34144)
  • [24] Horvath, M., Inverse spectral problems and closed exponential systems, Annals of Mathematics, 162, 2005, pp. 885-918. MR 2183284 (2006k:34023)
  • [25] Levitan, B., On the determination of a Sturm-Liouville equation by two spectra, Amer. Math. Soc. Transl., 68, 1968, pp. 1-20.
  • [26] Levitan, B., Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987. MR 933088 (89b:34001)
  • [27] Levitan, B., and Gasymov, M.G., Determination of a differential equation by two of its spectra, Russ. Math. Surv., 19, 1964, pp. 1-63. MR 0162996 (29:299)
  • [28] Levitan, B.M., and Sargsjan, I.S., Sturm-Liouville and Dirac Operators, Kluwer, Dordrecht, 1991. MR 1136037 (92i:34119)
  • [29] Marchenko, V., Some questions in the theory of one-dimensional linear differential operators of the second order. I, Trudy Moskov. Mat. Obsc. 1, 1952, pp. 327-420 (Russian); English transl. in Amer. Math. Soc. Transl., 2, 101, 1973, pp. 1-104. MR 0058064 (15:315b)
  • [30] Marchenko, V., Sturm-Liouville Operators and Applications, Birkhauser, Basel, 1986. MR 897106 (88f:34034)
  • [31] McLaughlin, Joyce R., Analytical Methods for Recovering Coefficients in Differential Equations From Spectral Data, SIAM Review, 28, 1986, pp. 53-72. MR 828436 (87d:34034)
  • [32] Psoschel, P., and Trubowitz, E., Inverse Spectral Theory, Academic Press, Boston, 1987. MR 894477 (89b:34061)
  • [33] del rio Castillo, R., On boundary conditions of an inverse Sturm-Liouville problem, SIAM J. Appl. Math., 50, 1990, pp. 1745-1751. MR 1080519 (91j:34023)
  • [34] Suzuki, T., Inverse problems for heat equations on compact intervals and on circles. I,
    J. Math. Soc. Japan, 38, 1986, pp. 39-65. MR 816222 (87f:35241)
  • [35] Wei, G., and Xu, H.K., On the missing eigenvalue problem for an inverse Sturm-Liouville problem, J. Math. Pures Appl., 91, 2009, pp. 468-475. MR 2517783 (2010f:34021)
  • [36] Zettl, A., Sturm-Liouville Theory, Surveys and Monographs 121, American Mathematical Society, 2005. MR 2170950 (2007a:34005)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 34A55, 34L40, 34L20

Retrieve articles in all journals with MSC (2010): 34A55, 34L40, 34L20


Additional Information

Guangsheng Wei
Affiliation: College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
Email: weimath@vip.sina.com

Hong-Kun Xu
Affiliation: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
Email: xuhk@math.nsysu.edu.tw

DOI: https://doi.org/10.1090/S0002-9947-2011-05545-5
Keywords: Eigenvalue, norming constant, boundary condition, inverse spectral problem
Received by editor(s): August 9, 2010
Received by editor(s) in revised form: January 15, 2011
Published electronically: November 7, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society