A finiteness result for commuting squares with large second relative commutant
Author:
Remus Nicoara
Journal:
Trans. Amer. Math. Soc. 364 (2012), 36853698
MSC (2010):
Primary 46L37
Published electronically:
February 16, 2012
MathSciNet review:
2901230
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove that there exist only finitely many commuting squares of finite dimensional algebras of fixed dimension, satisfying a ``large second relative commutant'' condition. We show this by studying the local minima of , where are fixed subalgebras of some algebra and is a unitary. When applied to lattices arising from subfactors satisfying a certain extremalitylike condition, our result yields Ocneanu's finiteness theorem for the standard invariants of such finite depth subfactors.
 [Chr]
Erik
Christensen, Subalgebras of a finite algebra, Math. Ann.
243 (1979), no. 1, 17–29. MR 543091
(80i:46051), 10.1007/BF01420203
 [EtNiOs]
Pavel
Etingof, Dmitri
Nikshych, and Viktor
Ostrik, On fusion categories, Ann. of Math. (2)
162 (2005), no. 2, 581–642. MR 2183279
(2006m:16051), 10.4007/annals.2005.162.581
 [H]
Uffe
Haagerup, Orthogonal maximal abelian *subalgebras of the
𝑛×𝑛 matrices and cyclic 𝑛roots,
Operator algebras and quantum field theory (Rome, 1996) Int. Press,
Cambridge, MA, 1997, pp. 296–322. MR 1491124
(98k:46087)
 [Jon]
V.
F. R. Jones, Index for subfactors, Invent. Math.
72 (1983), no. 1, 1–25. MR 696688
(84d:46097), 10.1007/BF01389127
 [JS]
V.
Jones and V.
S. Sunder, Introduction to subfactors, London Mathematical
Society Lecture Note Series, vol. 234, Cambridge University Press,
Cambridge, 1997. MR 1473221
(98h:46067)
 [Ni]
Remus
Nicoară, A finiteness result for commuting squares of matrix
algebras, J. Operator Theory 55 (2006), no. 2,
295–310. MR 2242852
(2007d:46055)
 [Oc]
Adrian
Ocneanu, Quantized groups, string algebras and Galois theory for
algebras, Operator algebras and applications, Vol.\ 2, London Math.
Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge,
1988, pp. 119–172. MR 996454
(91k:46068)
 [Po1]
S.
Popa, Classification of subfactors: the reduction to commuting
squares, Invent. Math. 101 (1990), no. 1,
19–43. MR
1055708 (91h:46109), 10.1007/BF01231494
 [Po2]
Sorin
Popa, Classification of amenable subfactors of type II, Acta
Math. 172 (1994), no. 2, 163–255. MR 1278111
(95f:46105), 10.1007/BF02392646
 [Po3]
Sorin
Popa, Orthogonal pairs of ∗subalgebras in finite von
Neumann algebras, J. Operator Theory 9 (1983),
no. 2, 253–268. MR 703810
(84h:46077)
 [Po4]
Sorin
Popa, An axiomatization of the lattice of higher relative
commutants of a subfactor, Invent. Math. 120 (1995),
no. 3, 427–445. MR 1334479
(96g:46051), 10.1007/BF01241137
 [Szy]
Wojciech
Szymański, Finite index subfactors and Hopf
algebra crossed products, Proc. Amer. Math.
Soc. 120 (1994), no. 2, 519–528. MR 1186139
(94d:46061), 10.1090/S00029939199411861391
 [Chr]
 E.Christensen, Subalgebras of a finite algebra, Mathematische Annalen 243, 1729 (1979). MR 543091 (80i:46051)
 [EtNiOs]
 P. Etingof, D. Nikshych, and V. Ostrik,On fusion categories, Annals of Math. (2) 162 (2005), no. 2, 581642. MR 2183279 (2006m:16051)
 [H]
 U.Haagerup, Orthogonal maximal abelian subalgebras of the matrices and cyclic roots, Operator Algebras and Quantum Field Theory (ed. S.Doplicher et al.), International Press (1997), 296322. MR 1491124 (98k:46087)
 [Jon]
 V.F.R.Jones, Index for subfactors, Invent. Math 72 (1983), 125. MR 696688 (84d:46097)
 [JS]
 V.F.R.Jones and V.S.Sunder, Introduction to subfactors, London Math. Soc. Lecture Notes Series 234, Cambridge University Press, 1997. MR 1473221 (98h:46067)
 [Ni]
 R. Nicoara, A finiteness result for commuting squares of matrix algebras, J. Operator Theory 55 (2006), 295310. MR 2242852 (2007d:46055)
 [Oc]
 A. Ocneanu. Quantized groups, string algebras and Galois theory for von Neumann algebras. Op. Alg. and Apl. London Math. Soc. Lect. Notes Series, 136 (1988), 119172. MR 996454 (91k:46068)
 [Po1]
 S.Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math., 101(1990),1943. MR 1055708 (91h:46109)
 [Po2]
 S.Popa, Classification of amenable subfactors of type II, Acta Mathematica, 172, 163255 (1994). MR 1278111 (95f:46105)
 [Po3]
 S.Popa, Othogonal pairs of *subalgebras in finite von Neumann algebras, J. Operator Theory 9, (1983), 253268. MR 703810 (84h:46077)
 [Po4]
 S. Popa, An axiomatization of the lattice of higher relative commutants, Invent. Math. 120 (1995), 427445. MR 1334479 (96g:46051)
 [Szy]
 W. Szymanski, Finite index subfactors and Hopf algebra crossed products, Proc. Amer. Math. Soc., 120(1994),519528. MR 1186139 (94d:46061)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2010):
46L37
Retrieve articles in all journals
with MSC (2010):
46L37
Additional Information
Remus Nicoara
Affiliation:
Department of Mathematics, University of Tennessee, Knoxville, Tennessee 379960612 – and – Institute of Mathematics of the Romanian Academy, 21 Calea Grivitei Street, 010702 Bucharest, Romania
DOI:
http://dx.doi.org/10.1090/S000299472012055322
PII:
S 00029947(2012)055322
Received by editor(s):
August 19, 2010
Received by editor(s) in revised form:
December 26, 2010
Published electronically:
February 16, 2012
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
