Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the restricted Verma modules at the critical level

Authors: Tomoyuki Arakawa and Peter Fiebig
Journal: Trans. Amer. Math. Soc. 364 (2012), 4683-4712
MSC (2010): Primary 17B67; Secondary 81R10
Published electronically: April 18, 2012
MathSciNet review: 2922606
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the restricted Verma modules of an affine Kac-Moody algebra at the critical level with a special emphasis on their Jordan-Hölder multiplicities. Feigin and Frenkel conjectured a formula for these multiplicities that involves the periodic Kazhdan-Lusztig polynomials. We prove this conjecture for all subgeneric blocks and for the case of anti-dominant simple subquotients.

References [Enhancements On Off] (What's this?)

  • [AJS94] Henning Haahr Andersen, Jens Carsten Jantzen, Wolfgang Soergel, Representations of quantum groups at a $ p$th root of unity and of semisimple groups in characteristic $ p$: independence of $ p$, Astérisque (1994), no. 220. MR 1272539 (95j:20036)
  • [Ara07] Tomoyuki Arakawa, Representation theory of $ W$-algebras, Invent.  Math.  169 (2) (2007), 219-320. MR 2318558 (2009d:17039)
  • [AF09] Tomoyuki Arakawa, Peter Fiebig, The linkage principle for restricted critical level representations of affine Kac-Moody algebras, preprint arXiv:0909.4214.
  • [BD96] Alexander Beilinson, Vladimir Drinfeld, Quantization of Hitchin's fibration and Langlands' program, in Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), volume 19 of Math. Phys. Stud., pages 3-7. Kluwer Acad. Publ., Dordrecht, 1996. MR 1385674 (97m:14008)
  • [DGK82] Vinay Deodhar, Ofer Gabber, Victor Kac, Structure of some categories of representations of infinite-dimensional Lie algebras, Adv. Math.45 (1982), no. 1, 92-116. MR 663417 (83i:17012)
  • [EF01] David Eisenbud, Edward Frenkel,
    Appendix to [Mus01],
  • [FBZ04] Edward Frenkel, David Ben-Zvi, Vertex algebras and algebraic curves, volume 88 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, second edition, 2004. MR 2082709 (2005d:17035)
  • [Feĭ84] Boris Feĭgin, Semi-infinite homology of Lie, Kac-Moody and Virasoro algebras, Uspekhi Mat. Nauk, 39 (1984), no. 2(236), 195-196. MR 740035 (85g:17003)
  • [FF90] Boris Feigin, Edward Frenkel, Representations of affine Kac-Moody algebras and bosonization, in Physics and mathematics of strings, 271-316. World Sci. Publ., Teaneck, NJ, 1990. MR 1104262 (92d:17025)
  • [FF92] -, Affine Kac-Moody algebras at the critical level and Gel $ \textprime $fand-Dikiĭ algebras, in Infinite analysis, Part A, B (Kyoto, 1991), volume 16 of Adv. Ser. Math. Phys., 197-215. World Sci. Publ., River Edge, NJ, 1992. MR 1187549 (93j:17049)
  • [Fie03] Peter Fiebig, Centers and translation functors for the category O over symmetrizable Kac-Moody algebras, Math. Z.  243 (2003), no. 4, 689-717. MR 1974579 (2004c:17051)
  • [Fie06] -, The combinatorics of category O for symmetrizable Kac-Moody algebras, Transform. Groups 11 (2006), no. 1, 29-49. MR 2205072 (2006k:17040)
  • [Fie07] -, Lusztig's conjecture as a moment graph problem; Bull. London Math. Soc. 42 (2010), no. 6, 957-972. MR 2740015
  • [Fre07] Edward Frenkel, Langlands correspondence for loop groups, volume 103 of Cambridge Studies in Advanced Mathematics.
    Cambridge University Press, Cambridge, 2007. MR 2332156 (2008h:22017)
  • [FG06] Edward Frenkel, Dennis Gaitsgory, Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69-260. MR 2263193 (2008e:17023)
  • [FG07] -, $ D$-modules on the affine flag variety and representations of affine Kac-Moody algebras, Represent. Theory 13 (2009), 470-608. MR 2558786
  • [Hay88] Takahiro Hayashi, Sugawara operators and Kac-Kazhdan conjecture, Invent.  Math.  94 (1988), no. 1, 13-52. MR 958588 (90c:17035)
  • [Jan79] Jens Carsten Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics 750, Springer, 1979. MR 552943 (81m:17011)
  • [Kac90] Victor Kac, Infinite-dimensional Lie algebras, Third edition. Cambridge University Press, Cambridge, 1990. MR 1104219 (92k:17038)
  • [Kac98] -, Vertex algebras for beginners, volume 10 of University Lecture Series.
    American Mathematical Society, Providence, RI, second edition, 1998. MR 1651389 (99f:17033)
  • [KK79] Victor Kac, David Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. Math. 34 (1979), 97-108. MR 547842 (81d:17004)
  • [Kos78] Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math.  48 (2) (1978),101-184. MR 507800 (80b:22020)
  • [KT00] Masaki Kashiwara, Toshiyuki Tanisaki, Characters for irreducible modules with non-critical highest weights over affine Lie algebras, in: Wang, Jianpan (ed.) et al., Representations and quantizations. Proceedings of the international conference on representation theory, Shanghai, China, June 29-July 3, 1998. Beijing: China Higher Education Press (CHEP), 275-296 (2000). MR 1802178 (2001k:17037)
  • [Ku89] Jong Min Ku, Structure of the Verma module $ M(-\rho )$ over Euclidean Lie algebras, J.  Algebra 124 (1989), no. 2, 367-387. MR 1011602 (90k:17057)
  • [Li04] Haisheng Li, Vertex algebras and vertex Poisson algebras, Commun. Contemp.  Math., 6(1) (2004), 61-110. MR 2048777 (2005d:17036)
  • [Lus80] George Lusztig, Hecke algebras and Jantzen's generic decomposition patterns, Adv. in Math. 37 (1980), no. 2, 121-164. MR 591724 (82b:20059)
  • [Lus91] -, Intersection cohomology methods in representation theory, I. Satake (ed.), Proc. Internat. Congr. Math. Kyoto 1990, I, Springer (1991), 155-174. MR 1159211 (93e:20059)
  • [Mal90] Feodor Malikov, Singular vectors corresponding to imaginary roots in Verma modules over affine Lie algebras, Math. Scand. 66 (1990), no. 1, 73-90. MR 1060899 (91f:17024)
  • [Mat96] Olivier Mathieu, On some modular representations of affine Kac-Moody algebras at the critical level, Compositio Math. 102 (1996), no. 3, 305-312. MR 1401425 (97g:17026)
  • [MP95] Robert Moody, Arturo Pianzola, Lie algebras with triangular decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995. MR 1323858 (96d:17025)
  • [Mus01] Mircea Mustaţă, Jet schemes of locally complete intersection canonical singularities, Invent. Math.  145 (3) (2001), 397-424.
    With an appendix by David Eisenbud and Edward Frenkel. MR 1856396 (2002f:14005)
  • [RCW82] Alvany Rocha-Caridi, Nolan Wallach, Projective modules over graded Lie algebras, Mathematische Zeitschrift 180 (1982), 151-177. MR 661694 (83h:17018)
  • [Soe90] Wolfgang Soergel, Kategorie $ \mathcal {O}$, perverse Garben, und Moduln über den Koinvarianten zur Weylgruppe, J. Am. Math. Soc.  3 (1990), no. 2, 421-445 MR 1029692 (91e:17007)
  • [Soe97] -, Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln, Represent. Theory 1 (1997), 37-68 (electronic). MR 1445511 (99d:17023)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 17B67, 81R10

Retrieve articles in all journals with MSC (2010): 17B67, 81R10

Additional Information

Tomoyuki Arakawa
Affiliation: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

Peter Fiebig
Affiliation: Department Mathematik, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

Received by editor(s): June 4, 2010
Received by editor(s) in revised form: September 17, 2010
Published electronically: April 18, 2012
Additional Notes: The first author was partially supported by the JSPS Grant-in-Aid for Scientific Research (B) No. 20340007.
The second author was supported by a grant of the Landesstiftung Baden–Württemberg
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society