Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Ranks of Selmer groups in an analytic family

Author: Joël Bellaïche
Journal: Trans. Amer. Math. Soc. 364 (2012), 4735-4761
MSC (2010): Primary 11F80; Secondary 11F33
Published electronically: April 18, 2012
MathSciNet review: 2922608
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the variation of the dimension of the Bloch-Kato Selmer group of a $ p$-adic Galois representation of a number field that varies in a refined family. We show that, if we restrict ourselves to representations that are, at every place dividing $ p$, crystalline, non-critically refined, and with a fixed number of non-negative Hodge-Tate weights, then the dimension of the Selmer group varies essentially lower-semi-continuously. This allows us to prove lower bounds for Selmer groups ``by continuity'', and in particular to deduce from a result of Bellaïche and Chenevier that the $ p$-adic Selmer group of a modular eigenform of weight $ 2$ of sign $ -1$ has rank at least $ 1$.

References [Enhancements On Off] (What's this?)

  • [BeCo] L. Berger & P. Colmez, Familles de représentations de de Rham et monodromie p-adique, in [BeBrCo], pages 303-337. MR 2493221 (2010g:11091)
  • [BeBrCo] L. Berger, C. Breuil, P. Colmez (editors), $ p$-adic representations of $ p$-adic groups I: Galois representations and $ (\phi ,\Gamma )$-modules, Astérisque 319 (2008).
  • [BCh] J. Bellaïche & G. Chenevier, $ p$-adic Families of Galois representations, Astérisque, 324, SMF (2009). MR 2656025
  • [BK] Bloch & Kato, Tamagawa Numbers of Motives in The Gorthendieck festschrift, vol. 1, Progress in Math 89, Birkhauser, 1990.
  • [BGR] W. Bosch, U. Güntzer & R. Remmert, Non-Archimedean Analysis, Springer-Verlag, Berlin (1984). MR 0746961 (86b:32031)
  • [Ca] H. Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in $ p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture, Contemp. Math. 165, AMS (1994), 213-237. MR 1279611 (95i:11059)
  • [Ch] G. Chenevier, Une application des variétés de Hecke des groupes unitaires, to appear in [H], available on chenevier/pub.html.
  • [Co1] P. Colmez, Représentations triangulines de dimension 2, in [BeBrCo], pages 213-258. MR 2493219 (2010f:11173)
  • [D] T. & V. Dokchitser Root numbers and parity of ranks of elliptic curves, preprint, June 2009 (available on arxiv).
  • [E] Eisenbud, Commutative Algebra with a view toward algebraic geometry, GTM 150, Springer. MR 1322960 (97a:13001)
  • [G] R. Greenberg, On the structure of certain Galois cohomology group, Doc. Math. 2006, Extra Vol., 335-391. MR 2290593 (2008b:11112)
  • [H] M. Harris et al., Stabilisation de la formule des traces, variétés de Shimura, et applications arithmétiques. Book project, available on
  • [J] U. Jannsen, On the $ l$-adic cohomology of varieties over number fields and its Galois cohomology, in Galois groups over $ \mathbb{Q}$ (Berkeley, CA, 1987), 315-360, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989. MR 1012170 (90i:11064)
  • [Ked] K. Kedlaya, Slope filtration and $ (\phi ,\Gamma )$-modules in families, preprint, available on˜kedlaya/papers/families.pdf
  • [KedLiu] K. Kedlaya and R. Liu, On families of $ (\phi ,\Gamma )$-modules, arXiv:0812.0112v2 (2009).
  • [Kis] M. Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent. Math. 153(2) (2003), 373-454. MR 1992017 (2004f:11053)
  • [Kim] B.D. Kim, The parity conjecture for elliptic curves at supersingular reduction primes, Compositio Math 143 (2007), 47-72. MR 2295194 (2007k:11091)
  • [La] M. Lazard, Les zéros des fonctions analytiques d'une variable sur un corps valué complet, Inst. Hautes Études Sci. Publ. Math., No. 14 (1962), 47-75. MR 0152519 (27:2497)
  • [Liu1] R. Liu, Cohomology and Duality for $ (\phi ,\Gamma )$- Modules over the Robba Ring, IMRN 2007. MR 2416996 (2009e:11222)
  • [Liu2] R. Liu, Slope Filtrations in Family, arxiv:0809.0331 (2008).
  • [Liu3] R. Liu, Families of $ (\phi ,\Gamma )$-modules, arxiv:0812.0112 (2008).
  • [Liu4] R. Liu, personal communication, emails to the author dated from June 2009 to July 2010.
  • [Liu5] R. Liu, On Families of Refined p-adic Representations, preprint in preparation,
  • [M] S. Morel,On the cohomology of certain non-compact Shimura varieties, Annals of Mathematics Studies, 173, Princeton Univ. Press, Princeton, NJ, 2010. MR 2567740 (2011b:11073)
  • [N1] J. Nekovar, On the parity of ranks of Selmer groups II, Comptes Rendus de l'Acad. Sci. Paris, Serie I, 332 (2001), No. 2, 99-104. MR 1813764 (2002e:11060)
  • [N2] J. Nekovar, Selmer complexes, S.M.F. Astérisque 310 (2006). MR 2333680 (2009c:11176)
  • [N3] J. Nekovar, On the parity of ranks of Selmer groups III, Doc. Math. 12 (2007), 243-274. MR 2350290 (2009k:11109)
  • [Ny] L. Nyssen, Pseudo-representations, Math. Annalen 306 (1996), 257-283. MR 1411348 (98a:20013)
  • [P] J. Pottharst, Triangulordinary Selmer Groups, arXiv:0805.2572 (2008) MR 2711680
  • [Ro] R. Rouquier, Caractérisation des caractères et pseudo-caractères, J. Algebra 180(2) (1996), 571-586. MR 1378546 (97a:20010)
  • [Ru] K. Rubin, Euler Systems, Annals of Math. Studies 147, Princeton Univ. Press, N.J., 2000. MR 1749177 (2001g:11170)
  • [SkU] C. Skinner and E. Urban, Sur les déformations $ p$-adiques de certaines représentations automorphes, Journal Inst. Math. Jussieu 5(4) (2006), 629-698. MR 2261226 (2008a:11072)
  • [Sh] S. W Shin, Odd-dimensional Galois representations arising from some conpact Shiura varieties, preprint.
  • [T] John Tate, Relations between $ K_2$ and Galois cohomology, Inventiones Math 36 (1976), 257-274. MR 0429837 (55:2847)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11F80, 11F33

Retrieve articles in all journals with MSC (2010): 11F80, 11F33

Additional Information

Joël Bellaïche
Affiliation: Department of Mathematics, MS 050, Brandeis University, 415 South Street, Waltham, Massachusetts 02453

Received by editor(s): January 18, 2010
Received by editor(s) in revised form: October 17, 2010
Published electronically: April 18, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society