Many closed symplectic manifolds have infinite Hofer-Zehnder capacity

Author:
Michael Usher

Journal:
Trans. Amer. Math. Soc. **364** (2012), 5913-5943

MSC (2010):
Primary 53D35, 37J45

Published electronically:
May 18, 2012

MathSciNet review:
2946937

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We exhibit many examples of closed symplectic manifolds on

which there is an autonomous Hamiltonian whose associated flow has no nonconstant periodic orbits (the only previous explicit example in the literature was the torus () with an irrational symplectic structure). The underlying smooth manifolds of our examples include, for instance: the surface and also infinitely many smooth manifolds homeomorphic but not diffeomorphic to it; infinitely many minimal four-manifolds having any given finitely-presented group as their fundamental group; and simply connected minimal four-manifolds realizing all but finitely many points in the first quadrant of the geography plane below the line corresponding to signature . The examples are constructed by performing symplectic sums along suitable tori and then perturbing the symplectic form in such a way that hypersurfaces near the ``neck'' in the symplectic sum have no closed characteristics. We conjecture that any closed symplectic four-manifold with admits symplectic forms with a similar property.

**[ABBKP]**Anar Akhmedov, Scott Baldridge, R. İnanç Baykur, Paul Kirk, and B. Doug Park,*Simply connected minimal symplectic 4-manifolds with signature less than -1*, J. Eur. Math. Soc. (JEMS)**12**(2010), no. 1, 133–161. MR**2578606**, 10.4171/JEMS/192**[FS97]**Ronald Fintushel and Ronald J. Stern,*Rational blowdowns of smooth 4-manifolds*, J. Differential Geom.**46**(1997), no. 2, 181–235. MR**1484044****[FS98]**Ronald Fintushel and Ronald J. Stern,*Knots, links, and 4-manifolds*, Invent. Math.**134**(1998), no. 2, 363–400. MR**1650308**, 10.1007/s002220050268**[Gi95]**Viktor L. Ginzburg,*An embedding 𝑆²ⁿ⁻¹→𝑅²ⁿ, 2𝑛-1≥7, whose Hamiltonian flow has no periodic trajectories*, Internat. Math. Res. Notices**2**(1995), 83–97 (electronic). MR**1317645**, 10.1155/S1073792895000079**[Gi97]**Viktor L. Ginzburg,*A smooth counterexample to the Hamiltonian Seifert conjecture in 𝐑⁶*, Internat. Math. Res. Notices**13**(1997), 641–650. MR**1459629**, 10.1155/S1073792897000421**[GiGü]**Viktor L. Ginzburg and Başak Z. Gürel,*A 𝐶²-smooth counterexample to the Hamiltonian Seifert conjecture in ℝ⁴*, Ann. of Math. (2)**158**(2003), no. 3, 953–976. MR**2031857**, 10.4007/annals.2003.158.953**[Go94]**Robert E. Gompf,*Some new symplectic 4-manifolds*, Turkish J. Math.**18**(1994), no. 1, 7–15. MR**1270434****[Go95]**Robert E. Gompf,*A new construction of symplectic manifolds*, Ann. of Math. (2)**142**(1995), no. 3, 527–595. MR**1356781**, 10.2307/2118554**[GS]**Robert E. Gompf and András I. Stipsicz,*4-manifolds and Kirby calculus*, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR**1707327****[Got]**Mark J. Gotay,*On coisotropic imbeddings of presymplectic manifolds*, Proc. Amer. Math. Soc.**84**(1982), no. 1, 111–114. MR**633290**, 10.1090/S0002-9939-1982-0633290-X**[HZ87]**H. Hofer and E. Zehnder,*Periodic solutions on hypersurfaces and a result by C. Viterbo*, Invent. Math.**90**(1987), no. 1, 1–9. MR**906578**, 10.1007/BF01389030**[HZ94]**Helmut Hofer and Eduard Zehnder,*Symplectic invariants and Hamiltonian dynamics*, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. MR**1306732****[IP97]**Eleny-Nicoleta Ionel and Thomas H. Parker,*The Gromov invariants of Ruan-Tian and Taubes*, Math. Res. Lett.**4**(1997), no. 4, 521–532. MR**1470424**, 10.4310/MRL.1997.v4.n4.a9**[IP99]**Eleny-Nicoleta Ionel and Thomas H. Parker,*Gromov invariants and symplectic maps*, Math. Ann.**314**(1999), no. 1, 127–158. MR**1689266**, 10.1007/s002080050289**[IP04]**Eleny-Nicoleta Ionel and Thomas H. Parker,*The symplectic sum formula for Gromov-Witten invariants*, Ann. of Math. (2)**159**(2004), no. 3, 935–1025. MR**2113018**, 10.4007/annals.2004.159.935**[Le]**Eugene Lerman,*Symplectic cuts*, Math. Res. Lett.**2**(1995), no. 3, 247–258. MR**1338784**, 10.4310/MRL.1995.v2.n3.a2**[LL99]**Tian-Jun Li and Ai-Ko Liu,*The equivalence between 𝑆𝑊 and 𝐺𝑟 in the case where 𝑏⁺=1*, Internat. Math. Res. Notices**7**(1999), 335–345. MR**1683312**, 10.1155/S1073792899000173**[LL01]**Tian-Jun Li and Ai-Ko Liu,*Uniqueness of symplectic canonical class, surface cone and symplectic cone of 4-manifolds with 𝐵⁺=1*, J. Differential Geom.**58**(2001), no. 2, 331–370. MR**1913946****[Liu]**Ai-Ko Liu,*Some new applications of general wall crossing formula, Gompf’s conjecture and its applications*, Math. Res. Lett.**3**(1996), no. 5, 569–585. MR**1418572**, 10.4310/MRL.1996.v3.n5.a1**[LP]**Junho Lee and Thomas H. Parker,*A structure theorem for the Gromov-Witten invariants of Kähler surfaces*, J. Differential Geom.**77**(2007), no. 3, 483–513. MR**2362322****[Lu]**Guangcun Lu,*Gromov-Witten invariants and pseudo symplectic capacities*, Israel J. Math.**156**(2006), 1–63. MR**2282367**, 10.1007/BF02773823**[Ma]**Charles-Michel Marle,*Sous-variétés de rang constant d’une variété symplectique*, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982), Astérisque, vol. 107, Soc. Math. France, Paris, 1983, pp. 69–86 (French). MR**753130****[McD91]**Dusa McDuff,*Immersed spheres in symplectic 4-manifolds*, Ann. Inst. Fourier (Grenoble)**42**(1992), no. 1-2, 369–392 (English, with French summary). MR**1162567****[McD98]**Dusa McDuff,*From symplectic deformation to isotopy*, Topics in symplectic 4-manifolds (Irvine, CA, 1996) First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA, 1998, pp. 85–99. MR**1635697****[MSy]**Dusa McDuff and Margaret Symington,*Associativity properties of the symplectic sum*, Math. Res. Lett.**3**(1996), no. 5, 591–608. MR**1418574**, 10.4310/MRL.1996.v3.n5.a3**[MW]**John D. McCarthy and Jon G. Wolfson,*Symplectic normal connect sum*, Topology**33**(1994), no. 4, 729–764. MR**1293308**, 10.1016/0040-9383(94)90006-X**[Sy]**Margaret Symington,*Symplectic rational blowdowns*, J. Differential Geom.**50**(1998), no. 3, 505–518. MR**1690738****[Ta]**Clifford Henry Taubes,*Seiberg Witten and Gromov invariants for symplectic 4-manifolds*, First International Press Lecture Series, vol. 2, International Press, Somerville, MA, 2000. Edited by Richard Wentworth. MR**1798809****[Th]**W. P. Thurston,*Some simple examples of symplectic manifolds*, Proc. Amer. Math. Soc.**55**(1976), no. 2, 467–468. MR**0402764**, 10.1090/S0002-9939-1976-0402764-6**[U]**Michael Usher,*Minimality and symplectic sums*, Int. Math. Res. Not. , posted on (2006), Art. ID 49857, 17. MR**2250015**, 10.1155/IMRN/2006/49857**[Ze]**E. Zehnder,*Remarks on periodic solutions on hypersurfaces*, Periodic solutions of Hamiltonian systems and related topics (Il Ciocco, 1986) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 209, Reidel, Dordrecht, 1987, pp. 267–279. MR**920629**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
53D35,
37J45

Retrieve articles in all journals with MSC (2010): 53D35, 37J45

Additional Information

**Michael Usher**

Affiliation:
Department of Mathematics, University of Georgia, Athens, Georgia 30602

Email:
usher@math.uga.edu

DOI:
http://dx.doi.org/10.1090/S0002-9947-2012-05623-6

Received by editor(s):
January 31, 2011

Published electronically:
May 18, 2012

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.