Many closed symplectic manifolds have infinite HoferZehnder capacity
Author:
Michael Usher
Journal:
Trans. Amer. Math. Soc. 364 (2012), 59135943
MSC (2010):
Primary 53D35, 37J45
Published electronically:
May 18, 2012
MathSciNet review:
2946937
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We exhibit many examples of closed symplectic manifolds on which there is an autonomous Hamiltonian whose associated flow has no nonconstant periodic orbits (the only previous explicit example in the literature was the torus () with an irrational symplectic structure). The underlying smooth manifolds of our examples include, for instance: the surface and also infinitely many smooth manifolds homeomorphic but not diffeomorphic to it; infinitely many minimal fourmanifolds having any given finitelypresented group as their fundamental group; and simply connected minimal fourmanifolds realizing all but finitely many points in the first quadrant of the geography plane below the line corresponding to signature . The examples are constructed by performing symplectic sums along suitable tori and then perturbing the symplectic form in such a way that hypersurfaces near the ``neck'' in the symplectic sum have no closed characteristics. We conjecture that any closed symplectic fourmanifold with admits symplectic forms with a similar property.
 [ABBKP]
Anar
Akhmedov, Scott
Baldridge, R.
İnanç Baykur, Paul
Kirk, and B.
Doug Park, Simply connected minimal symplectic 4manifolds with
signature less than 1, J. Eur. Math. Soc. (JEMS) 12
(2010), no. 1, 133–161. MR 2578606
(2011b:57032), 10.4171/JEMS/192
 [FS97]
Ronald
Fintushel and Ronald
J. Stern, Rational blowdowns of smooth 4manifolds, J.
Differential Geom. 46 (1997), no. 2, 181–235.
MR
1484044 (98j:57047)
 [FS98]
Ronald
Fintushel and Ronald
J. Stern, Knots, links, and 4manifolds, Invent. Math.
134 (1998), no. 2, 363–400. MR 1650308
(99j:57033), 10.1007/s002220050268
 [Gi95]
Viktor
L. Ginzburg, An embedding
𝑆²ⁿ⁻¹→𝑅²ⁿ,
2𝑛1≥7, whose Hamiltonian flow has no periodic
trajectories, Internat. Math. Res. Notices 2 (1995),
83–97 (electronic). MR 1317645
(96a:58087), 10.1155/S1073792895000079
 [Gi97]
Viktor
L. Ginzburg, A smooth counterexample to the Hamiltonian Seifert
conjecture in 𝐑⁶, Internat. Math. Res. Notices
13 (1997), 641–650. MR 1459629
(98i:58087), 10.1155/S1073792897000421
 [GiGü]
Viktor
L. Ginzburg and Başak
Z. Gürel, A 𝐶²smooth counterexample to the
Hamiltonian Seifert conjecture in ℝ⁴, Ann. of Math. (2)
158 (2003), no. 3, 953–976. MR 2031857
(2005e:37133), 10.4007/annals.2003.158.953
 [Go94]
Robert
E. Gompf, Some new symplectic 4manifolds, Turkish J. Math.
18 (1994), no. 1, 7–15. MR 1270434
(95j:57025)
 [Go95]
Robert
E. Gompf, A new construction of symplectic manifolds, Ann. of
Math. (2) 142 (1995), no. 3, 527–595. MR 1356781
(96j:57025), 10.2307/2118554
 [GS]
Robert
E. Gompf and András
I. Stipsicz, 4manifolds and Kirby calculus, Graduate Studies
in Mathematics, vol. 20, American Mathematical Society, Providence,
RI, 1999. MR
1707327 (2000h:57038)
 [Got]
Mark
J. Gotay, On coisotropic imbeddings of
presymplectic manifolds, Proc. Amer. Math.
Soc. 84 (1982), no. 1, 111–114. MR 633290
(83j:53028), 10.1090/S0002993919820633290X
 [HZ87]
H.
Hofer and E.
Zehnder, Periodic solutions on hypersurfaces and a result by C.\
Viterbo, Invent. Math. 90 (1987), no. 1,
1–9. MR
906578 (89a:58040), 10.1007/BF01389030
 [HZ94]
Helmut
Hofer and Eduard
Zehnder, Symplectic invariants and Hamiltonian dynamics,
Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser
Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. MR 1306732
(96g:58001)
 [IP97]
ElenyNicoleta
Ionel and Thomas
H. Parker, The Gromov invariants of RuanTian and Taubes,
Math. Res. Lett. 4 (1997), no. 4, 521–532. MR 1470424
(98i:58038), 10.4310/MRL.1997.v4.n4.a9
 [IP99]
ElenyNicoleta
Ionel and Thomas
H. Parker, Gromov invariants and symplectic maps, Math. Ann.
314 (1999), no. 1, 127–158. MR 1689266
(2000k:53077), 10.1007/s002080050289
 [IP04]
ElenyNicoleta
Ionel and Thomas
H. Parker, The symplectic sum formula for GromovWitten
invariants, Ann. of Math. (2) 159 (2004), no. 3,
935–1025. MR 2113018
(2006b:53110), 10.4007/annals.2004.159.935
 [Le]
Eugene
Lerman, Symplectic cuts, Math. Res. Lett. 2
(1995), no. 3, 247–258. MR 1338784
(96f:58062), 10.4310/MRL.1995.v2.n3.a2
 [LL99]
TianJun
Li and AiKo
Liu, The equivalence between 𝑆𝑊 and
𝐺𝑟 in the case where 𝑏⁺=1, Internat.
Math. Res. Notices 7 (1999), 335–345. MR 1683312
(2000h:57058), 10.1155/S1073792899000173
 [LL01]
TianJun
Li and AiKo
Liu, Uniqueness of symplectic canonical class, surface cone and
symplectic cone of 4manifolds with 𝐵⁺=1, J.
Differential Geom. 58 (2001), no. 2, 331–370.
MR
1913946 (2003g:57042)
 [Liu]
AiKo
Liu, Some new applications of general wall crossing formula,
Gompf’s conjecture and its applications, Math. Res. Lett.
3 (1996), no. 5, 569–585. MR 1418572
(97k:57038), 10.4310/MRL.1996.v3.n5.a1
 [LP]
Junho
Lee and Thomas
H. Parker, A structure theorem for the GromovWitten invariants of
Kähler surfaces, J. Differential Geom. 77
(2007), no. 3, 483–513. MR 2362322
(2010b:53159)
 [Lu]
Guangcun
Lu, GromovWitten invariants and pseudo symplectic capacities,
Israel J. Math. 156 (2006), 1–63. MR 2282367
(2009d:53133), 10.1007/BF02773823
 [Ma]
CharlesMichel
Marle, Sousvariétés de rang constant d’une
variété symplectique, Third Schnepfenried geometry
conference, Vol. 1 (Schnepfenried, 1982), Astérisque,
vol. 107, Soc. Math. France, Paris, 1983, pp. 69–86
(French). MR
753130 (85k:53037)
 [McD91]
Dusa
McDuff, Immersed spheres in symplectic 4manifolds, Ann. Inst.
Fourier (Grenoble) 42 (1992), no. 12, 369–392
(English, with French summary). MR 1162567
(93k:53030)
 [McD98]
Dusa
McDuff, From symplectic deformation to isotopy, Topics in
symplectic 4manifolds (Irvine, CA, 1996) First Int. Press Lect. Ser., I,
Int. Press, Cambridge, MA, 1998, pp. 85–99. MR 1635697
(99j:57025)
 [MSy]
Dusa
McDuff and Margaret
Symington, Associativity properties of the symplectic sum,
Math. Res. Lett. 3 (1996), no. 5, 591–608. MR 1418574
(98a:57036), 10.4310/MRL.1996.v3.n5.a3
 [MW]
John
D. McCarthy and Jon
G. Wolfson, Symplectic normal connect sum, Topology
33 (1994), no. 4, 729–764. MR 1293308
(95h:57038), 10.1016/00409383(94)90006X
 [Sy]
Margaret
Symington, Symplectic rational blowdowns, J. Differential
Geom. 50 (1998), no. 3, 505–518. MR 1690738
(2000e:57043)
 [Ta]
Clifford
Henry Taubes, Seiberg Witten and Gromov invariants for symplectic
4manifolds, First International Press Lecture Series, vol. 2,
International Press, Somerville, MA, 2000. Edited by Richard Wentworth. MR 1798809
(2002j:53115)
 [Th]
W.
P. Thurston, Some simple examples of symplectic
manifolds, Proc. Amer. Math. Soc.
55 (1976), no. 2,
467–468. MR 0402764
(53 #6578), 10.1090/S00029939197604027646
 [U]
Michael
Usher, Minimality and symplectic sums, Int. Math. Res. Not. ,
posted on (2006), Art. ID 49857, 17. MR 2250015
(2007h:53139), 10.1155/IMRN/2006/49857
 [Ze]
E.
Zehnder, Remarks on periodic solutions on hypersurfaces,
Periodic solutions of Hamiltonian systems and related topics (Il Ciocco,
1986) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 209,
Reidel, Dordrecht, 1987, pp. 267–279. MR 920629
(89b:58083)
 [ABBKP]
 A. Akhmedov, S. Baldridge, R. I. Baykur, P. Kirk, and B. D. Park. Simply connected minimal symplectic manifolds with signature less than . J. Eur. Math. Soc. (JEMS) 12 (2010), no. 1, 133161. MR 2578606
 [FS97]
 R. Fintushel and R. Stern. Rational blowdowns of smooth fourmanifolds. J. Differential Geom. 46 (1997), 181235. MR 1484044
 [FS98]
 R. Fintushel and R. Stern. Knots, links and manifolds. Invent. Math. 134 (1998), 363400. MR 1650308
 [Gi95]
 V. Ginzburg. An embedding , , whose Hamiltonian flow has no periodic trajectories. Internat. Math. Res. Notices 1995, no. 2, 8397. MR 1317645
 [Gi97]
 V. Ginzburg. A smooth counterexample to the Hamiltonian Seifert conjecture in . Internat. Math. Res. Notices 1997, no. 13, 641650. MR 1459629
 [GiGü]
 V. Ginzburg and B. Gürel. A smooth counterexample to the Hamiltonian Seifert conjecture in . Ann. of Math. (2) 158 (2003), no. 3, 953976. MR 2031857
 [Go94]
 R. Gompf. Some new symplectic manifolds. Turkish J. Math. 1 (1994), no. 1, 715. MR 1270434
 [Go95]
 R. Gompf. A new construction of symplectic manifolds. Ann. Math. (2) 142 (1995), 527595. MR 1356781
 [GS]
 R. Gompf and A. Stipsicz. manifolds and Kirby calculus. AMS, Providence, RI, 1999. MR 1707327
 [Got]
 M. Gotay. On coisotropic embeddings of presymplectic manifolds. Proc. Amer. Math. Soc. 84 (1982), no. 1, 111114. MR 0633290
 [HZ87]
 H. Hofer and E. Zehnder. Periodic solutions on hypersurfaces and a result by C. Viterbo. Invent. Math. 90 (1987), no. 1, 19. MR 0906578
 [HZ94]
 H. Hofer and E. Zehnder. Symplectic invariants and Hamiltonian dynamics. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 1994. MR 1306732
 [IP97]
 E. Ionel and T. Parker. The Gromov invariants of RuanTian and Taubes. Math. Res. Lett. 4 (1997), no. 4, 521532. MR 1470424
 [IP99]
 E. Ionel and T. Parker. Gromov invariants and symplectic maps. Math. Ann. 314 (1999), no. 1, 127158. MR 1689266
 [IP04]
 E. Ionel and T. Parker. The symplectic sum formula for GromovWitten invariants Ann. Math. (2) 159 (2004), 9351025. MR 2113018
 [Le]
 E. Lerman. Symplectic cuts. Math. Res. Lett. 2 (1995), 247258. MR 1338784
 [LL99]
 T.J. Li and A.K. Liu. The equivalence between and in the case where . Internat. Math. Res. Notices 1999, no. 7, 335345. MR 1683312
 [LL01]
 T.J. Li and A.K. Liu. Uniqueness of symplectic canonical class, surface cone and symplectic cone of manifolds with . J. Differential Geom. 58 (2001), no. 2, 331370. MR 1913946
 [Liu]
 A.K. Liu. Some new applications of general wall crossing formula, Gompf's conjecture and its applications. Math. Res. Lett. 3 (1996), no. 5, 569585. MR 1418572
 [LP]
 J. Lee and T. Parker. A structure theorem for the GromovWitten invariants of Kähler surfaces. J. Differential Geom. 77 (2007), no. 3, 483513. MR 2362322
 [Lu]
 G. Lu. GromovWitten invariants and pseudo symplectic capacities. Israel J. Math. 156 (2006), 163. MR 2282367
 [Ma]
 C.M. Marle. Sousvariétés de rang constant d'une variété symplectique. In Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982). Asterisque, 107108. Soc. Math. France, Paris, 1983, 6986. MR 0753130
 [McD91]
 D. McDuff. Immersed spheres in symplectic manifolds. Annales de LInst. Fourier. 42 (1991), 369392. MR 1162567
 [McD98]
 D. McDuff. From symplectic deformation to isotopy. In Topics in symplectic manifolds (Irvine, CA, 1996), 8599, First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA, 1998. MR 1635697
 [MSy]
 D. McDuff and M. Symington. Associativity properties of the symplectic sum. Math. Res. Lett. 3 (1996), no. 5, 591608. MR 1418574
 [MW]
 J. McCarthy and J. Wolfson. Symplectic normal connect sum. Topology. 33 (1994), no. 4, 729764. MR 1293308
 [Sy]
 M. Symington. Symplectic rational blowdowns. J. Differential Geom. 50 (1998), no. 3, 505518. MR 1690738
 [Ta]
 C. Taubes. SeibergWitten and Gromov invariants for symplectic manifolds. First International Press Lecture Series, 2. International Press, Somerville, MA, 2000. MR 1798809
 [Th]
 W. Thurston. Some simple examples of symplectic manifolds. Proc. Amer. Math. Soc. 55 (1976), 467468. MR 0402764
 [U]
 M. Usher. Minimality and symplectic sums. Int. Math. Res. Not. 2006 (2006), Article ID 49857, 117. MR 2250015
 [Ze]
 E. Zehnder. Remarks on periodic solutions on hypersurfaces. In Periodic solutions of Hamiltonian systems and related topics (Il Ciocco, 1986), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 209, Reidel, Dordrecht, 1987, 267279. MR 0920629
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2010):
53D35,
37J45
Retrieve articles in all journals
with MSC (2010):
53D35,
37J45
Additional Information
Michael Usher
Affiliation:
Department of Mathematics, University of Georgia, Athens, Georgia 30602
Email:
usher@math.uga.edu
DOI:
http://dx.doi.org/10.1090/S000299472012056236
Received by editor(s):
January 31, 2011
Published electronically:
May 18, 2012
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
