Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Discrete Morse theory for manifolds with boundary


Author: Bruno Benedetti
Journal: Trans. Amer. Math. Soc. 364 (2012), 6631-6670
MSC (2010): Primary 57Q10, 57Q15, 05A16, 52B22, 57M25
DOI: https://doi.org/10.1090/S0002-9947-2012-05614-5
Published electronically: April 30, 2012
MathSciNet review: 2958950
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a version of discrete Morse theory specific for manifolds with boundary. The idea is to consider Morse functions for which all boundary cells are critical. We obtain ``Relative Morse Inequalities'' relating the homology of the manifold to the number of interior critical cells. We also derive a Ball Theorem, in analogy to Forman's Sphere Theorem. The main corollaries of our work are:

  1. For each $ d \ge 3$ and for each $ k \ge 0$, there is a PL $ d$-sphere on which any discrete Morse function has more than $ k$ critical $ (d-1)$-cells.

    (This solves a problem by Chari.)

  2. For fixed $ d$ and $ k$, there are exponentially many combinatorial types of simplicial $ d$-manifolds (counted with respect to the number of facets) that admit discrete Morse functions with at most $ k$ critical interior $ (d-1)$-cells.

    (This connects discrete Morse theory to enumerative combinatorics/
    discrete quantum gravity.)

  3. The barycentric subdivision of any simplicial constructible $ d$-ball is
    collapsible.

    (This ``almost'' solves a problem by Hachimori.)

  4. Every constructible ball collapses onto its boundary minus a facet.

    (This improves a result by the author and Ziegler.)

  5. Any $ 3$-ball with a knotted spanning edge cannot collapse onto its boundary minus a facet.

    (This strengthens a classical result by Bing and a recent result by the author and Ziegler.)


References [Enhancements On Off] (What's this?)

  • 1. J. AMBJøRN, B. DURHUUS, AND T. JONSSON, Quantum Geometry. Cambridge University Press (1997). MR 1465433 (98i:82001)
  • 2. F. ANCEL AND C. GUILBAULT, Compact contractible $ n$-manifolds have arc spines ($ n \ge 5$). Pacific J. Math. 168 (1995), 1-10. MR 1331991 (96c:57041)
  • 3. E. BATZIES AND V. WELKER, Discrete Morse theory for cellular resolutions. J. Reine und Angew. Math. 543 (2002), 147-168. MR 1887881 (2003b:13017)
  • 4. B. BENEDETTI, On Locally Constructible Manifolds. PhD thesis, TU Berlin (2010).
    Available online at http://opus.kobv.de/tuberlin/volltexte/2010/2519/.
  • 5. B. BENEDETTI, Collapses, products and LC manifolds. J. Comb. Theory, Ser. A 118 (2011), no. 2, 586-590. MR 2739505
  • 6. B. BENEDETTI, Discrete Morse theory is at least as perfect as Morse theory.
    Preprint (2010) at arxiv:1010.0548.
  • 7. B. BENEDETTI AND F. H. LUTZ, The dunce hat and a minimal non-extendably collapsible 3-ball. To appear in Electronic Geometry Models (2011). Preprint at arxiv:0912.3723.
  • 8. B. BENEDETTI AND G. M. ZIEGLER, On locally constructible spheres and balls. Acta Mathematica, 206 (2011), 205-243. MR 2810852
  • 9. R. H. BING, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture. In Lectures on Modern Mathematics, T. Saaty, ed., vol. II, Wiley (1964), 93-128. MR 0172254 (30:2474)
  • 10. A. BJ¨ORNER, Topological methods. In Handbook of Combinatorics, Vol. 1, Elsevier (1995), 1819-1872. MR 1373690 (96m:52012)
  • 11. R. BOTT, Morse Theory indomitable. In Raoul Bott: Collected Papers, R. D. MacPherson, ed., vol. 4: Mathematics related to Physics. Birkhäuser (1995), 465-480.
  • 12. H. BRUGGESSER AND P. MANI, Shellable decompositions of cells and spheres. Math. Scand. 29 (1971), 197-205. MR 0328944 (48:7286)
  • 13. S. BUONCRISTIANO, Fragments of geometric topology from the Sixties. Vol. 6 of Geometry & Topology Monographs, Coventry (2003).
  • 14. J. W. CANNON, Shrinking cell-like decompositions of manifolds. Codimension three. Ann. Math. 110 (1979), 83-112. MR 541330 (80j:57013)
  • 15. M. K. CHARI, On discrete Morse functions and combinatorial decompositions. Discrete Math. 217 (2000), 101-113. MR 1766262 (2001g:52016)
  • 16. D. R. J. CHILLINGWORTH, Collapsing three-dimensional convex polyhedra. Proc. Camb. Phil. Soc. 63 (1967), 353-357. Erratum in 88 (1980), 307-310. MR 0210100 (35:995); MR 0578274 (81g:52003)
  • 17. M. COURDURIER, On stars and links of shellable complexes. J. Comb. Theory, Ser. A, 113 (2006), 692-697. MR 2216461 (2006m:52022)
  • 18. X. DONG, Alexander duality for projections of polytopes. Topology 41 (2002), 1109-1121. MR 1923215 (2003h:52014)
  • 19. B. DURHUUS AND T. JONSSON, Remarks on the entropy of 3-manifolds. Nucl. Phys. B 445 (1995), 182-192. MR 1338102 (97a:57012)
  • 20. R. D. EDWARDS, The double suspension of a certain homology 3-sphere is $ S^5$. Notices AMS 22 (1975), 334.
  • 21. F. EFFENBERGER AND W. KSUHNEL, Hamiltonian submanifolds of regular polytopes. Discr. & Comput. Geom. 43 (2010), 242-262. MR 2579694 (2011a:52031)
  • 22. R. EHRENBORG AND M. HACHIMORI, Non-constructible complexes and the bridge index. Europ. J. Combin. 22 (2001), 475-491. MR 1829741 (2002c:57040)
  • 23. D. EISENBUD, Commutative algebra. With a view towards algebraic geometry. Grad. Texts in Math., 150, Springer-Verlag, New York, 1995. MR 1322960 (97a:13001)
  • 24. A. B. ENGSTR¨OM, Discrete Morse functions from Fourier transforms. Experimental Mathematics 18:1 (2009), 45-53. MR 2548985 (2010i:57050)
  • 25. R. FORMAN, Morse theory for cell complexes. Adv. in Math. 134 (1998), 90-145. MR 1612391 (99b:57050)
  • 26. R. FORMAN, Witten-Morse theory for cell complexes. Topology 37 (1998), 945-979. MR 1650414 (99m:58046)
  • 27. M. FREEDMAN, The topology of four-dimensional manifolds. J. Diff. Geom. 17 (1982), 357-453. MR 679066 (84b:57006)
  • 28. R. FURCH, Zur Grundlegung der kombinatorischen Topologie. Abh. Math. Sem. Univ. Hamburg 3 (1924), 69-88.
  • 29. R. GOODRICK, Non-simplicially collapsible triangulations of $ I^n$. Proc. Camb. Phil. Soc. 64 (1968), 31-36. MR 0220272 (36:3338)
  • 30. M. GORESKY AND R. MACPHERSON, Stratified Morse Theory. Vol. 14 of A Series of Modern Surveys in Mathematics, Springer-Verlag (1988). MR 932724 (90d:57039)
  • 31. M. A. GUEST, Morse theory in the 1990s. In Invitations to Geometry and Topology, M. R. Bridson and S. M. Salamon, eds., Oxford University Press (2002), 146-207. MR 1967749 (2004a:58010)
  • 32. M. HACHIMORI, Combinatorics of constructible complexes. Ph.D. thesis, Tokyo University (2000).
  • 33. M. HACHIMORI, Decompositions of two-dimensional simplicial complexes. Discrete Mathematics 308 (2008), 2307-2312. MR 2404561 (2009h:52030)
  • 34. M. HACHIMORI AND K. SHIMOKAWA, Tangle sum and constructible spheres. Journal of Knot Theory and Its Ramifications 13 (2004), 373-383. MR 2061175 (2005e:57017)
  • 35. M. HACHIMORI AND G. M. ZIEGLER, Decompositions of simplicial balls and spheres with knots consisting of few edges. Math. Z. 235 (2000), 159-171. MR 1785077 (2001m:52017)
  • 36. M. E. HAMSTROM AND R. P. JERRARD, Collapsing a triangulation of a ``knotted'' cell. Proc. Amer. Math. Soc. 21 (1969), 327-331. MR 0243510 (39:4831)
  • 37. A. HATCHER, Algebraic Topology. Cambridge University Press (2002). MR 1867354 (2002k:55001)
  • 38. M. HOCHSTER, Rings of invariant of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Annals of Math. 96 (1972), 318-337. MR 0304376 (46:3511)
  • 39. G. JERSSE AND N. MRAMOR KOSTA, Ascending and descending regions of a discrete Morse function. Comput. Geom. 42 (2009), 639-651. MR 2519382 (2010e:57002)
  • 40. M. JSOLLENBECK AND V. WELKER, Minimal resolutions via algebraic discrete Morse theory. Mem. Amer. Math. Soc. 197 (2009), no. 923. MR 2488864 (2009m:13017)
  • 41. M. JOSWIG AND M. E. PFETSCH, Computing optimal Morse matchings. SIAM J. Discrete Math. 20:1 (2006), 11-25. MR 2257241 (2007h:90067)
  • 42. A. KAWAUCHI, A Survey of Knot Theory. Birkhäuser (1996). MR 1417494 (97k:57011)
  • 43. D. KOZLOV, Combinatorial Algebraic Topology. Springer (2008). MR 2361455 (2008j:55001)
  • 44. T. LEWINER, H. LOPES, AND G. TAVARES, Optimal discrete Morse functions for 2-manifolds. Computational Geometry 26 (2003), 221-233. MR 2005300 (2004h:57041)
  • 45. W. B. R. LICKORISH, An unsplittable triangulation. Michigan Math. J. 18 (1971), 203-204. MR 0287551 (44:4755)
  • 46. W. B. R. LICKORISH, Unshellable triangulations of spheres, Europ. J. Combin., 12 (1991), 527-530. MR 1136394 (92k:57044)
  • 47. W. B. R. LICKORISH AND J. M. MARTIN, Triangulations of the 3-ball with knotted spanning $ 1$-simplexes and collapsible $ r$-th derived subdivisions. Trans. Amer. Math. Soc. 170 (1972), 451-458. MR 0238288 (38:6564)
  • 48. F. H. LUTZ, A vertex-minimal non-shellable simplicial 3-ball with 9 vertices and 18 facets.
    In http://www.eg-models.de, Electronic Geometry Model No. 2003.05.004.
  • 49. F. H. LUTZ, Small examples of nonconstructible simplicial balls and spheres. SIAM J. Discrete Math. 18 (2004), 103-109. MR 2112491 (2005i:57028)
  • 50. B. MAZUR, A note on some contractible $ 4$-manifolds. Annals of Math. 73 (1961), 221-228. MR 0125574 (23:A2873)
  • 51. E. MILLER AND V. REINER, Reciprocal domains and Cohen-Macaulay $ d$-complexes in $ \mathbb{R}^d$. The Electronic Journal of Combinatorics 11 (2005), 1-11. MR 2120111 (2005k:52024)
  • 52. E. MILLER AND B. STURMFELS, Combinatorial Commutative Algebra. Springer Verlag (2005). MR 2110098 (2006d:13001)
  • 53. J. MILNOR, On manifolds homeomorphic to the $ 7$-sphere. Annals of Math. 64 (1956), 399-405. MR 0082103 (18:498d)
  • 54. J. MILNOR, Fifty years ago: Topology of manifolds in the 50's and 60's. In Low Dimensional Topology, vol. 15 of IAS / Park City Mathematics Series, AMS (2009), 7-20. MR 2503491 (2010h:57001)
  • 55. M. MORSE, Relations between the critical points of a real function of $ n$ independent variables. Trans. Amer. Math. Soc. 27 (1925), 345-396. MR 1501318
  • 56. J. R. MUNKRES, Elements of Algebraic Topology. Addison-Wesley, Menlo Park (1984). MR 755006 (85m:55001)
  • 57. M. NEWMAN, A property of $ 2$-dimensional elements. Proc. Koninkl. Nederl. Akad. Wet. 29 (1926), 1401-1405.
  • 58. M. NEWMAN, Boundaries of ULC sets in Euclidean $ n$-space. Proc. Nat. Acad. Sci. 34 (1948), 193-196. MR 0025731 (10:56g)
  • 59. U. PACHNER, Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten. Abh. Math. Sem. Hamb. 57 (1987), 69-86. MR 927165 (89g:57027)
  • 60. G. PERELMAN, The entropy formula for the Ricci flow and its geometric applications. Preprint (2002) at arxiv:math/0211159.
  • 61. G. PERELMAN, Ricci flow with surgery on three-manifolds. Preprint (2003) at arxiv:math/0303109.
  • 62. T. PRICE, Compact, contractible $ n$-manifolds and their boundaries. Michigan Math. J. 18 (1971), 331-341. MR 0290378 (44:7562)
  • 63. J. S. PROVAN AND L. J. BILLERA, Decompositions of simplicial complexes related to diameters of convex polyhedra. Math. Operations Research 5 (1980), 576-594. MR 593648 (82c:52010)
  • 64. C. P. ROURKE AND B. J. SANDERSON, Introduction to picewise-linear topology. Springer (1972). MR 0350744 (50:3236)
  • 65. M. E. RUDIN, An unshellable triangulation of a tetrahedron. Bull. Amer. Math. Soc. 64 (1958), 90-91. MR 0097055 (20:3535)
  • 66. V. V. SHARKO, Functions of manifolds. Algebraic and topological aspects. Transl. Math. Monographs 131, AMS, 1993. MR 1248167 (94j:57001)
  • 67. J. SHARESHIAN, Discrete Morse theory for the complex of $ 2$-connected graphs. Topology 40 (2001), 681-701. MR 1851558 (2002h:57017)
  • 68. E. SK¨OLDBERG, Morse theory from an algebraic viewpoint. Trans. Amer. Math. Soc. 358 (2006), 115-129. MR 2171225 (2006e:16013)
  • 69. S. SMALE, On the structure of manifolds. Amer. J. Math. 84 (1962), 387-399. MR 0153022 (27:2991)
  • 70. D. E. SMITH, On the Cohen-Macaulay property in commutative algebra and simplicial topology. Pac. J. of Math. 141 (1990), 165-196. MR 1028269 (91f:52020)
  • 71. C.T.C. WALL, Geometrical connectivity I & II. J. London Math. Soc. 3 (1971), 597-608. MR 0290387 (44:7569a)
  • 72. V. WELKER, Constructions preserving evasiveness and collapsibility. Discr. Math. 207 (1999), 243-255. MR 1710494 (2000h:55030)
  • 73. G. W. WHITEHEAD, Elements of Homotopy Theory. Vol. 61 of Graduate Texts in Math., Springer (1978). MR 516508 (80b:55001)
  • 74. J. H. C. WHITEHEAD, Simplicial spaces, nuclei and $ m$-groups, Proc. Lond. Math. Soc. 45 (1939), 243-327.
  • 75. E. C. ZEEMAN, On the dunce hat. Topology 2 (1963), 341-358. MR 0156351 (27:6275)
  • 76. E. C. ZEEMAN, Seminar on Combinatorial Topology. Institut des Hautes Études Scientifiques, Paris, 1966. Fascicule I (Exposés I - V).
  • 77. E. C. ZEEMAN, Unknotting combinatorial balls. Annals of Math. 78 (1978), 501-526. MR 0160218 (28:3432)
  • 78. G. M. ZIEGLER, Lectures on Polytopes. Vol. 152 of Graduate Texts in Math., Springer (1995).
    Revised seventh printing 2007. MR 1311028 (96a:52011)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57Q10, 57Q15, 05A16, 52B22, 57M25

Retrieve articles in all journals with MSC (2010): 57Q10, 57Q15, 05A16, 52B22, 57M25


Additional Information

Bruno Benedetti
Affiliation: Institute of Mathematics, Freic Universität, Arnimallee 2, 14195 Berlin, Germany
Address at time of publication: Department of Mathematics, Royal Institute of Technology (KTH), Lindstedtsvägen 25, 10044 Stockholm, Sweden
Email: benedetti@math.fu-berlin.de, brunoben@kth.se

DOI: https://doi.org/10.1090/S0002-9947-2012-05614-5
Received by editor(s): August 10, 2010
Received by editor(s) in revised form: April 28, 2011
Published electronically: April 30, 2012
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society