Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

A Caldero-Chapoton map for infinite clusters


Authors: Peter Jørgensen and Yann Palu
Journal: Trans. Amer. Math. Soc. 365 (2013), 1125-1147
MSC (2010): Primary 13F60, 16G10, 16G20, 16G70, 18E30
DOI: https://doi.org/10.1090/S0002-9947-2012-05464-X
Published electronically: November 6, 2012
MathSciNet review: 3003260
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a Caldero-Chapoton map on a triangulated category with a cluster tilting subcategory which may have infinitely many indecomposable objects.

The map is not necessarily defined on all objects of the triangulated category, but we show that it is a (weak) cluster map in the sense of Buan-Iyama-Reiten-Scott. As a corollary, it induces a surjection from the set of exceptional objects which can be reached from the cluster tilting subcategory to the set of cluster variables of an associated cluster algebra.

Along the way, we study the interaction between Calabi-Yau reduction, cluster structures, and the Caldero-Chapoton map.

We apply our results to the cluster category $ \mathscr {D}$ of Dynkin type $ A_{\infty }$ which has a rich supply of cluster tilting subcategories with infinitely many indecomposable objects. We show an example of a cluster map which cannot be extended to all of $ \mathscr {D}$.

The case of $ \mathscr {D}$ also permits us to illuminate results by Assem-Reutenauer-Smith on $ \operatorname {SL}_2$-tilings of the plane.


References [Enhancements On Off] (What's this?)

  • 1. C. Amiot and S. Oppermann, Cluster equivalence and graded derived equivalence, preprint (2010). arXiv:math.RT/1003.4916.
  • 2. I. Assem and G. Dupont, Friezes and a construction of the euclidean cluster variables, J. Pure Appl. Algebra 215 (2011), 2322-2340. MR 2793939
  • 3. I. Assem, C. Reutenauer, and D. Smith, Frises, Adv. Math. 225 (2010), 3134-3165. MR 2729004
  • 4. M. Auslander, ``Representation dimension of Artin algebras'', Queen Mary College Mathematics Notes, Queen Mary College, London, 1971. Reprinted pp. 505-574 in ``Selected works of Maurice Auslander'', Vol. 1 (edited by Reiten, Smalø, and Solberg), American Mathematical Society, Providence, RI, 1999. MR 1674397 (2000j:01119a)
  • 5. M. Auslander, Representation theory of Artin algebras II, Comm. Algebra 1 (1974), 269-310. MR 0349747 (50:2240)
  • 6. A. B. Buan, O. Iyama, I. Reiten, and J. Scott, Cluster structures for $ 2$-Calabi-Yau categories and unipotent groups, Compositio Math. 145 (2009), 1035-1079. MR 2521253 (2010h:18021)
  • 7. A. B. Buan, R. J. Marsh, M. Reineke, I. Reiten, and G. Todorov, Tilting theory and cluster combinatorics, Adv.Math. 204 (2006), 572-618. MR 2249625 (2007f:16033)
  • 8. A. B. Buan, R. J. Marsh, and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), 323-332. MR 2247893 (2007f:16035)
  • 9. A. B. Buan, R. J. Marsh, I. Reiten, and G. Todorov, Clusters and seeds in acyclic cluster algebras, with an appendix coauthored in addition by P. Caldero and B. Keller, Proc. Amer. Math. Soc. 135 (2007), 3049-3060. MR 2322734 (2008j:16044)
  • 10. P. Caldero and F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595-616. MR 2250855 (2008b:16015)
  • 11. P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations arising from clusters ($ A_n$ case), Trans.Amer. Math. Soc. 358 (2006), 1347-1364. MR 2187656 (2007a:16025)
  • 12. P. Caldero and B. Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169-211. MR 2385670 (2009f:16027)
  • 13. P. Caldero and B. Keller, From triangulated categories to cluster algebras II, Ann. Sci. École Norm. Sup. (4) 39 (6) (2006), 983-1009. MR 2316979 (2008m:16031)
  • 14. R. Dehy and B. Keller, On the combinatorics of rigid objects in $ 2$-Calabi-Yau categories, Int. Math. Res. Not.IMRN 2008, no. 11, Art. ID rnn029, 17 pages. MR 2428855 (2009e:18020)
  • 15. S. Fomin and A. Zelevinsky, Cluster algebras I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529. MR 1887642 (2003f:16050)
  • 16. T. Holm and P. Jørgensen, On a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon, Math. Z. 270 (2012), 277-295. MR 2875834
  • 17. O. Iyama and Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), 117-168. MR 2385669 (2008k:16028)
  • 18. B. Keller, Categorification of acyclic cluster algebras: an introduction, arXiv:0801.3103v1 [math.RT]
  • 19. B. Keller, Cluster algebras, quiver representations and triangulated categories, pp. 76-160 in ``Triangulated Categories'' (edited by Holm, Jørgensen, and Rouquier), London Math. Soc. Lecture Note Ser., 375, Cambridge Univ. Press, 2010. MR 2681708 (2011h:13033)
  • 20. B. Keller and I. Reiten, Acyclic Calabi-Yau categories. With an appendix by Michel Van den Bergh, Compositio Math. 144 (2008), 1332-1348. MR 2457529 (2009i:18007)
  • 21. B. Keller and I. Reiten, Cluster tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 (2007), 123-151. MR 2313531 (2008b:18018)
  • 22. S. König and B. Zhu, From triangulated categories to abelian categories -- cluster tilting in a general framework, Math. Z. 258 (2008), 143-160. MR 2350040 (2008m:18021)
  • 23. H. Lenzing and I. Reiten, Hereditary Noetherian categories of positive Euler characteristic, Math. Z. 254 (2006), 133-171. MR 2232010 (2007e:18008)
  • 24. Y. Palu, Cluster characters for $ 2$-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble) 58 (2008), 2221-2248. MR 2473635 (2009k:18013)
  • 25. Y. Palu, Cluster characters II: A multiplication formula, Proc. London Math. Soc. 104 (2012), 57-78. MR 2876964
  • 26. P.-G. Plamondon, Cluster characters for cluster categories with infinite-dimensional morphism spaces, Adv. Math. 227 (2011), 1-39. MR 2782186
  • 27. R. Schiffler and H. Thomas, On cluster algebras arising from unpunctured surfaces, Int. Math. Res. Not. IMRN 2009, no. 17, Art. ID rnp047, 30 pages. MR 2534994 (2010h:13040)
  • 28. A. Zelevinsky, What is a cluster algebra?, Notices Amer. Math. Soc. 54 (2007), 1494-1495. MR 2361161

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 13F60, 16G10, 16G20, 16G70, 18E30

Retrieve articles in all journals with MSC (2010): 13F60, 16G10, 16G20, 16G70, 18E30


Additional Information

Peter Jørgensen
Affiliation: School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
Email: peter.jorgensen@ncl.ac.uk

Yann Palu
Affiliation: Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
Address at time of publication: LAMFA, Université de Picardie Jules Verne, 33, Rue Saint-Leu, 80039 Amiens, France
Email: ypalu@maths.leeds.ac.uk, yann.palu@u-picardie.fr

DOI: https://doi.org/10.1090/S0002-9947-2012-05464-X
Keywords: Calabi-Yau reduction, cluster category, cluster map, cluster structure, cluster tilting subcategory, coindex, Dynkin type $A_{\infty}$, exchange pair, exchange triangle, Fomin-Zelevinsky mutation, Grassmannian, index, $K$-theory, $\operatorname{SL}_{2}$-tiling
Received by editor(s): May 4, 2010
Received by editor(s) in revised form: September 8, 2010
Published electronically: November 6, 2012
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society