Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

The partition function modulo prime powers


Authors: Matthew Boylan and John J. Webb
Journal: Trans. Amer. Math. Soc. 365 (2013), 2169-2206
MSC (2010): Primary 11F03, 11F11, 11F33, 11P83
DOI: https://doi.org/10.1090/S0002-9947-2012-05702-3
Published electronically: October 25, 2012
MathSciNet review: 3009655
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \ell \geq 5$ be prime, let $ m\geq 1$ be an integer, and let $ p(n)$ denote the partition function. Folsom, Kent, and Ono recently proved that there exists a positive integer $ b_{\ell }(m)$ of size roughly $ m^2$ such that the module formed from the $ \mathbb{Z}/\ell ^m\mathbb{Z}$-span of generating functions for $ p\left (\frac {\ell ^bn + 1}{24}\right )$ with odd $ b\geq b_{\ell }(m)$ has finite rank. The same result holds with ``odd'' $ b$ replaced by ``even'' $ b$. Furthermore, they proved an upper bound on the ranks of these modules. This upper bound is independent of $ m$; it is $ \left \lfloor \frac {\ell + 12}{24}\right \rfloor $.

In this paper, we prove, with a mild condition on $ \ell $, that $ b_{\ell }(m)\leq 2m - 1$. Our bound is sharp in all computed cases with $ \ell \geq 29$. To deduce it, we prove structure theorems for the relevant $ \mathbb{Z}/\ell ^m\mathbb{Z}$-modules of modular forms. This work sheds further light on a question of Mazur posed to Folsom, Kent, and Ono.


References [Enhancements On Off] (What's this?)

  • 1. S. Ahlgren, Distribution of the partition function modulo composite integers $ M$, Math. Ann. 318 (2000), no. 4, 795-803. MR 1802511 (2001j:11099)
  • 2. S. Ahlgren and K. Ono, Congruence properties for the partition function, Proc. Natl. Acad. Sci. USA 98 (2001), no. 23, 12882-12884 (electronic). MR 1862931 (2002k:11187)
  • 3. G. E. Andrews, The theory of partitions, reprint of the 1976 original, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 1998. MR 1634067 (99c:11126)
  • 4. G. E. Andrews and F. G. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 167-171. MR 0929094 (89b:11079)
  • 5. A. O. L. Atkin, Proof of a conjecture of Ramanujan, Glasgow Math. J. 8 (1967), 14-32. MR 0205958 (34:5783)
  • 6. A. O. L. Atkin, Multiplicative congruence properties and density problems for $ p(n)$, Proc. London Math. Soc. (3) 18 (1968), 563-576. MR 0227105 (37:2690)
  • 7. A. O. L. Atkin and J. Lehner, Hecke operators on $ \Gamma \sb {0}(m)$, Math. Ann. 185 (1970), 134-160. MR 0268123 (42:3022)
  • 8. A. O. L. Atkin andP. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84-106. MR 0060535 (15,685d)
  • 9. E. Belmont, H. Lee, A. Musat, S. Trebat-Leder, $ \ell $-adic properties of partition functions, preprint.
  • 10. F. Calegari, A remark on a theorem of Folsom, Kent, and Ono, 2011, preprint.
  • 11. F. Diamond and J. Shurman, A first course in modular forms, Graduate Texts in Mathematics, 228, Springer, New York, 2005. MR 2112196 (2006f:11045)
  • 12. A. Folsom, Z. Kent, K. Ono. $ \ell $-adic properties of the partition function, preprint.
  • 13. H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, 17, Amer. Math. Soc., Providence, RI, 1997. MR 1474964 (98e:11051)
  • 14. N. Katz, $ p$-adic properties of modular schemes and modular forms, in Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), 69-190, Lecture Notes in Mathematics, Vol. 350, Springer Berlin, 1973. MR 0447119 (56:5434)
  • 15. H. Matsumura, Commutative algebra, second edition, Mathematics Lecture Note Series, 56, Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1980. MR 0575344 (82i:13003)
  • 16. K. Ono, Distribution of the partition function modulo $ m$, Ann. of Math. (2) 151 (2000), no. 1, 293-307. MR 1745012 (2000k:11115)
  • 17. K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and $ q$-series, CBMS Regional Conference Series in Mathematics, 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004. MR 2020489 (2005c:11053)
  • 18. K. Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, in Current Developments in Mathematics, 2008, 347-454, Int. Press, Somerville, MA. MR 2555930 (2010m:11060)
  • 19. S. Ramanujan, Congruence properties of partitions, Math. Z. 9 (1921), no. 1-2, 147-153. MR 1544457
  • 20. N. Ramsey, Geometric and $ p$-adic modular forms of half-integral weight, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 3, 599-624. MR 2244225 (2007c:11057)
  • 21. N. Ramsey, The half-integral weight eigencurve, Algebra Number Theory 2 (2008), no. 7, 755-808. MR 2460694 (2010a:11077)
  • 22. J.-P. Serre, Congruences et formes modulaires [d'après H. P. F. Swinnerton-Dyer], in Séminaire Bourbaki, 24e année (1971/1972), Exp. No. 416, 319-338. Lecture Notes in Math., 317, Springer, Berlin. MR 0466020 (57:5904a)
  • 23. J.-P. Serre, Formes modulaires et fonctions zêta $ p$-adiques, in Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), 191-268. Lecture Notes in Math., 350, Springer, Berlin. MR 0404145 (53:7949a)
  • 24. H. P. F. Swinnerton-Dyer, On $ l$-adic representations and congruences for coefficients of modular forms, in Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), 1-55. Lecture Notes in Math., 350, Springer, Berlin. MR 0406931 (53:10717a)
  • 25. G.N. Watson, Ramanujan's Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. 179 (1938), 97-128.
  • 26. Y. Yang, Congruences of the partition function, Int. Math. Res. Not. (2010) doi: 10.1093/imrn/rnq194

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11F03, 11F11, 11F33, 11P83

Retrieve articles in all journals with MSC (2010): 11F03, 11F11, 11F33, 11P83


Additional Information

Matthew Boylan
Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
Email: boylan@math.sc.edu

John J. Webb
Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
Address at time of publication: Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109
Email: webbjj3@email.sc.edu, webbjj@wfu.edu

DOI: https://doi.org/10.1090/S0002-9947-2012-05702-3
Received by editor(s): May 20, 2011
Received by editor(s) in revised form: September 7, 2011
Published electronically: October 25, 2012
Additional Notes: The first author thanks the National Science Foundation for its support through grant DMS-0901068.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society