Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Levels of knotting of spatial handlebodies


Authors: R. Benedetti and R. Frigerio
Journal: Trans. Amer. Math. Soc. 365 (2013), 2099-2167
MSC (2010): Primary 57M27; Secondary 57M15, 57M05
DOI: https://doi.org/10.1090/S0002-9947-2012-05707-2
Published electronically: August 21, 2012
MathSciNet review: 3009654
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ H$ is a spatial handlebody, i.e. a handlebody embedded in the $ 3$-sphere, a spine of $ H$ is a graph $ \Gamma \subset S^3$ such that $ H$ is a regular neighbourhood of $ \Gamma $. Usually, $ H$ is said to be unknotted if it admits a planar spine. This suggests that a handlebody should be considered not very knotted if it admits spines that enjoy suitable special properties. Building on this remark, we define several levels of knotting of spatial handlebodies, and we provide a complete description of the relationships between these levels, focusing our attention on the case of genus 2. We also relate the knotting level of a spatial handlebody $ H$ to classical topological properties of its complement $ M=S^3\setminus H$, such as its cut number. More precisely, we show that if $ H$ is not highly knotted, then $ M$ admits special cut systems for $ M$, and we discuss the extent to which the converse implication holds. Along the way we construct obstructions that allow us to determine the knotting level of several families of spatial handlebodies. These obstructions are based on recent quandle-coloring invariants for spatial handlebodies, on the extension to the context of spatial handlebodies of tools coming from the theory of homology boundary links, on the analysis of appropriate coverings of handlebody complements, and on the study of the classical Alexander elementary ideals of their fundamental groups.


References [Enhancements On Off] (What's this?)

  • 1. R. Benedetti, R. Frigerio, R. Ghiloni, The topology of Helmholtz domains, arXiv:1001.4418 (2010).
  • 2. P. Bellis, Homology boundary links, patterns, and Seifert forms, Thesis (Ph.D.) Rice University, ProQuest LLC, Ann Arbor, MI, 1996. MR 2694305
  • 3. P. Bellis, Realizing homology boundary links with arbitrary patterns, Trans. Amer. Math. Soc. 350 (1998), 87-100. MR 1357391 (98d:57041)
  • 4. R.H. Bing, Mapping a $ 3$-sphere onto a homotopy $ 3$-sphere, Topology Seminar, Wisconsin, 1965, Annals of Mathematics Studies, no. 60, Princeton, 1966, 89-99. MR 0219071 (36:2154)
  • 5. J.S. Birman, H.M. Hilden, Heegaard splittings of branched coverings of $ S^{3}$, Trans. Amer. Math. Soc. 213 (1975), 315-352. MR 0380765 (52:1662)
  • 6. J. Birman, On the equivalence of Heegaard splittings of closed, orientable $ 3$-manifolds, in ``Knots, Groups and 3-manifolds'', Annals of Math. Studies 84 (1975). MR 0375318 (51:11513)
  • 7. J. Cantarella, D. DeTurck, H. Gluck, Vector calculus and the topology of domains in $ 3$-space, Amer. Math. Monthly 109 (2002), 409-442. MR 1901496 (2003c:53023)
  • 8. S. Cho, D. MCcullough, The tree of knot tunnels, Geom. Topol. 13 (2009), 769-815. MR 2469530 (2010j:57005)
  • 9. D. Cimasoni, Studying the multivariable Alexander polynomial by means of Seifert surfaces, Bol. Soc. Mat. Mexicana (3) 10 (2004), Special Issue, 107-115. MR 2199342 (2006j:57011)
  • 10. T. D. Cochran, J. Levine, Homology boundary links and the Andrews-Curtis conjecture, Topology 30 (1991), 231-239. MR 1098917 (92f:57011)
  • 11. T. D. Cochran, K. E. Orr, Not all links are concordant to boundary links, Bull. Amer. Math. Soc. 23 (1990), 99-106. MR 1031581 (91c:57012)
  • 12. T. D. Cochran, K. E. Orr, Not all links are concordant to boundary links, Ann. of Math. (2) 138 (1993), 519-554. MR 1247992 (95c:57042)
  • 13. M. Cohen, W. Metzler, A. Zimmermann, What does a basis of $ F(a,\,b)$ look like? Math. Ann. 257 (1981), 435-445. MR 639577 (82m:20028)
  • 14. R. H. Fox, The imbedding of polyhedra in $ 3$-space, Ann. Math. 49 (1948), 462-470. MR 0026326 (10:138c)
  • 15. R. H. Fox, Free differential calculus, Ann. Math. 57 (1953) 547-560. MR 0053938 (14:843d)
  • 16. R. Frigerio, B. Martelli, C. Petronio, Complexity and Heegaard genus of an infinite class of compact $ 3$-manifolds, Pacific J. Math. 210 (2003), 283-297. MR 1988535 (2004c:57034)
  • 17. S.M. Ghuman, L.M. Granda, C.M. Tsau, Dehn surgery on singular knots, J. Knot Theory Ramifications 18 (2009), 547-560. MR 2514548 (2010i:57014)
  • 18. C.McA. Gordon, On primitive sets of loops in the boundary of a handlebody, Topology Appl. 27 (1987), no. 3, 285-299. MR 918538 (88k:57013)
  • 19. M. A. Gutierrez, Polynomial invariants of boundary links, Rev. Columbiana Mat. 8 (1974), 97-109. MR 0367969 (51:4211)
  • 20. J. Hillmann, Algebraic invariants of links, Series on Knots and Everything, 32. World Scientific Publishing Co., Inc., River Edge, NJ, 2002. MR 1932169 (2003k:57014)
  • 21. J.A. Hillman, Alexander Ideals of Links, LNM 895, Springer, 1981. MR 653808 (84j:57004)
  • 22. J.A. Hillman, Longitudes of a link and principality of an Alexander ideal, Proc. Amer. Math. Soc. 72 (1978), 370-374. MR 507341 (80c:57006)
  • 23. A. Ishii, Moves and invariants for knotted handlebodies, Algebraic and Geometric Topology 8 (2008), 1403-1418. MR 2443248 (2009g:57022)
  • 24. A. Ishii, M. Iwakiri, Quandle cocycle invariants for spatial graphs and knotted handlebodies, to appear in Canad. J. Math, available at http://iwakiri.web.fc2.com/handlebody.pdf
  • 25. W. Jaco, Three-manifolds with fundamental group a free product, Bull. Amer. Math. Soc. 75 (1969), 972-977. MR 0243531 (39:4852)
  • 26. W. Jaco, D. R. McMillan, Retracting three-manifolds onto finite graphs, Illinois J. Math. 14 (1970), 150-158. MR 0256370 (41:1026)
  • 27. W. Jaco, Nonretractable cubes-with-holes, Michigan Math. J. 18 (1971), 193-201. MR 0288742 (44:5938)
  • 28. L. H. Kauffman, Invariants of Graphs in $ 3$-space, Trans. Amer. Math. Soc. 311 (1989), 697-710. MR 946218 (89f:57007)
  • 29. S. Kinoshita, On elementary ideals of polyhedra in the $ 3$-sphere, Pacific J. Math. 42 (1972), 89-98. MR 0312485 (47:1042)
  • 30. S. Kojima, Y. Miyamoto, The smallest hyperbolic $ 3$-manifolds with totally geodesic boundary, J. Differential Geom. 34 (1991), 175-192. MR 1114459 (92f:57019)
  • 31. H. W. Lambert, Mapping cubes with holes onto cubes with handles, Illinois J. Math. 13 (1969), 606-615. MR 0248787 (40:2037)
  • 32. J.H. Lee, G.T. Gin, Two tunnels of a tunnel number one link, Proceedings of the East Asian school of knots, links and related topics, Seoul, Korea, 2004.
  • 33. R. Lickorish, An introduction to knot theory, Graduate Texts in Mathematics 175, Springer-Verlag, New York, 1997. MR 1472978 (98f:57015)
  • 34. G. S. Makanin, Equations in a free group, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 6, 1199-1273. MR 682490 (84m:20040)
  • 35. W. Magnus, A. Karras, B. Solitar, Combinatorial group theory: Presentations in terms of generators and relators, Wiley (Interscience) 1966.
  • 36. M. Motto, Inequivalent genus $ 2$ handlebodies in $ S^3$ with homeomorphic complement, Top. Appl. 36 (1990), 283-290. MR 1070707 (91j:57008)
  • 37. J. Nielsen, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1917), 385-397. MR 1511907
  • 38. R. P. Osborne, H. Zieschang, Primitives in the free group on two generators, Invent. Math. 63 (1981), 17-24. MR 608526 (82i:20042)
  • 39. J.W. Morgan, The Smith conjecture (New York, 1979), Pure Appl. Math. 112, Academic Press, Orlando, FL, 1984. MR 758460
  • 40. C.D. Papakyriakopoulous, On Dehn's lemma and the asphericity of knots, Ann. Math. 66 (1957), 1-26. MR 0090053 (19:761a)
  • 41. M. Scharlemann, A. Thompson, Detecting unknotted graphs in $ 3$-spaces, J. Differential Geometry 34 (1991), 539-560. MR 1131443 (93a:57012)
  • 42. M. Scharlemann, A. Thompson, Thin position and Heegaard splittings of the $ 3$-sphere, J. Differential Geometry 39 (1994), 343-357. MR 1267894 (95a:57026)
  • 43. M. Scharlemann, A. Thompson, Surfaces, submanifolds, and aligned Fox reimbedding in non-Haken $ 3$-manifolds, Proc. Amer. Math. Soc. 133 (2004), 1573-1580. MR 2120271 (2005j:57029)
  • 44. M. Scharlemann, Refilling meridians in a genus $ 2$ handlebody complement, Geometry and Topology Monograph 14 (2008), 451-475. MR 2484713 (2010b:57025)
  • 45. A. S. Sikora, Cut numbers of $ 3$-manifolds Trans. Amer. Math. Soc. 357 (2005), 2007-2020. MR 2115088 (2005i:57024)
  • 46. N. Smythe, Boundary links, in Topology Seminars, Ann. Math. Studies 60, ed. R.H. Bing, Princeton Univ. Press 1965.
  • 47. J. R. Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170-181. MR 0175956 (31:232)
  • 48. J. R. Stallings, Problems about free quotients of groups, Geometric group theory (Columbus, OH, 1992), 165-182, Ohio State Univ. Math. Res. Inst. Publ., 3, de Gruyter, Berlin, 1995. MR 1355111 (97b:20028)
  • 49. S. Suzuki, Alexander ideals of graphs in the $ 3$-sphere, Tokyo J. Math. 7 (1984), no. 1, 233-247. MR 752125 (86a:57006)
  • 50. S. A. Taylor, Boring split links, Pacific J. Math. 241 (2009), no. 1, 127-167. MR 2485461 (2010i:57025)
  • 51. G. Torres, R.H. Fox, Dual presentations of the group of a knot, Ann. of Math. (2) 59 (1954), 211-218. MR 0062439 (15:979b)
  • 52. W. P. Thurston, Three-Dimensional Geometry and Topology, Princeton Math. Ser., vol. 35, Princeton University Press, Princeton, NJ, 1997. MR 1435975 (97m:57016)
  • 53. L. Traldi, The determinantal ideals of link modules. I, Pac. J. Math. 101 (1982), 215-222. MR 671854 (84h:57004)
  • 54. L. Traldi, The determinantal ideals of link modules. II, Pac. J. Math. 109 (1983), 237-245. MR 716299 (85k:57008)
  • 55. Y. Tsukui, On surfaces in $ 3$-space, Yokohama Math. J. 18 (1970), 93-104. MR 0292052 (45:1140)
  • 56. A. Ushijima, Hyperbolic spatial graphs arising from strongly invertible knots, Topology Appl. 139 (2004), 253-260. MR 2051109 (2005c:57020)
  • 57. F. Waldhausen, Heegaard-Zerlegungen der $ 3$-Sphäre, Topology 7 (1968), 195-203. MR 0227992 (37:3576)
  • 58. R. Weidmann, On the rank of amalgamated products and product knot groups, Math. Ann. 312 (1998), no. 4, 761-771. MR 1660235 (99k:20052)
  • 59. C. M. Weinbaum, Partitioning a primitive word into a generating set, Math. Ann. 181 (1969), 157-162. MR 0245658 (39:6964)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57M27, 57M15, 57M05

Retrieve articles in all journals with MSC (2010): 57M27, 57M15, 57M05


Additional Information

R. Benedetti
Affiliation: Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy
Email: benedett@dm.unipi.it

R. Frigerio
Affiliation: Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy
Email: frigerio@dm.unipi.it

DOI: https://doi.org/10.1090/S0002-9947-2012-05707-2
Keywords: Quandle, maximal free covering, Alexander polynomial, cut number, corank, spatial graph, boundary link, homology boundary link, pattern
Received by editor(s): March 21, 2011
Received by editor(s) in revised form: September 2, 2011
Published electronically: August 21, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society