Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Loewner theory in annulus I: Evolution families and differential equations


Authors: Manuel D. Contreras, Santiago Díaz-Madrigal and Pavel Gumenyuk
Journal: Trans. Amer. Math. Soc. 365 (2013), 2505-2543
MSC (2010): Primary 30C35, 30C20, 30D05; Secondary 30C80, 34M15
DOI: https://doi.org/10.1090/S0002-9947-2012-05718-7
Published electronically: November 1, 2012
MathSciNet review: 3020107
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Loewner theory, based on dynamical viewpoint, is a powerful tool in complex analysis, which plays a crucial role in such important achievements as the proof of the famous Bieberbach conjecture and the well-celebrated Schramm stochastic Loewner evolution (SLE). Recently, Bracci et al. proposed a new approach bringing together all the variants of the (deterministic) Loewner evolution in a simply connected reference domain. We construct an analog of this theory for the annulus. In this paper, the first of two articles, we introduce a general notion of an evolution family over a system of annuli and prove that there is a one-to-one correspondence between such families and semicomplete weak holomorphic vector fields. Moreover, in the non-degenerate case, we establish a constructive characterization of these vector fields analogous to the non-autonomous Berkson-Porta representation of Herglotz vector fields in the unit disk.


References [Enhancements On Off] (What's this?)

  • 1. M. Abate, Iteration theory of holomorphic maps on taut manifolds, Mediterranean, Rende, 1989. MR 1098711 (92i:32032)
  • 2. M. Abate, F. Bracci, M.D. Contreras, and S. Díaz-Madrigal, The evolution of Loewner's differential equation. To appear in Newsletter of the European Mathematical Society, 2010, issue 78, 31-38. MR 2768999
  • 3. N. I. Akhiezer, Elements of the theory of elliptic functions, translated from the second Russian edition by H. H. McFaden, Translations of Mathematical Monographs, 79, Amer. Math. Soc., Providence, RI, 1990. MR 1054205 (91k:33016)
  • 4. I. A. Aleksandrov, Parametric continuations in the theory of univalent functions (in Russian), Izdat. ``Nauka'', Moscow, 1976. MR 0480952 (58:1099)
  • 5. L. Arosio, F. Bracci, H. Hamada, G. Kohr, An abstract approach to Loewner's chains, to appear in J. Anal. Math. Available on ArXiv 1002.4262
  • 6. R. O. Bauer and R. M. Friedrich, Stochastic Loewner evolution in multiply connected domains, C. R. Math. Acad. Sci. Paris 339 (2004), no. 8, 579-584. MR 2111355
  • 7. R. O. Bauer andR. M. Friedrich, On radial stochastic Loewner evolution in multiply connected domains, J. Funct. Anal. 237 (2006), no. 2, 565-588. MR 2230350 (2007d:60007)
  • 8. R. O. Bauer and R. M. Friedrich, On chordal and bilateral SLE in multiply connected domains, Math. Z. 258 (2008), no. 2, 241-265. MR 2357634 (2009b:60292)
  • 9. E. Berksonand H. Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), no. 1, 101-115. MR 0480965 (58:1112)
  • 10. F. Bracci, M. D. Contreras, and S. Díaz-Madrigal, Evolution families and the Loewner equation I: the unit disk, to appear in J. Reine Angew. Math. Available on ArXiv 0807.1594. DOI: 10.1515/crelle.2011.167.
  • 11. F. Bracci, M. D. Contreras, and S. Díaz-Madrigal, Evolution families and the Loewner equation II: complex hyperbolic manifolds, Math. Ann. 344 (2009), 947-962. MR 2507634 (2010f:32020)
  • 12. F. Bracci, M. D. Contreras, and S. Díaz-Madrigal, Semigroups versus evolution families in the Loewner theory, J. Anal. Math. 115 (2011), 273-292. MR 2855040
  • 13. L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137-152. MR 0772434 (86h:30026)
  • 14. T. Casavecchia, S. Díaz-Madrigal, A non-autonomous version of the Denjoy-Wolff theorem, to appear in Complex Anal. Oper. Theory. Avaliable on ArXiv 0910.2875. DOI: 10.1007/s11785-011-0214-6.
  • 15. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York, 1955. MR 0069338 (16,1022b)
  • 16. M.D. Contreras, S. Díaz-Madrigal, and P. Gumenyuk, Loewner chains in the unit disk. Revista Matemática Iberoamericana 26 (2010), 975-1012. MR 2789373
  • 17. M.D. Contreras, S. Díaz-Madrigal, and P. Gumenyuk, Geometry behind chordal Loewner chains, Complex Anal. Oper. Theory 4 (2010), 541-587 MR 2719792 (2011h:30037)
  • 18. P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983. MR 0708494 (85j:30034)
  • 19. A. F. Filippov, Differential equations with discontinuous right-hand sides (in Russian), ``Nauka'', Moscow, 1985. MR 0790682 (87f:34002); translation to English: Kluwer Acad. Publ., Dordrecht, 1988. MR 1028776 (90i:34002)
  • 20. C. H. FitzGerald and Ch. Pommerenke, The de Branges theorem on univalent functions, Trans. Amer. Math. Soc. 290 (1985), 683-690. MR 792819 (87b:30023)
  • 21. G. M. Goluzin, On the parametric representation of functions univalent in a ring, (in Russian) Mat. Sbornik N.S. 29(71) (1951), 469-476. MR 0047780 (13,930b)
  • 22. V. Ja. Gutljanskiĭ, Parametric representation of univalent functions (in Russian), Dokl. Akad. Nauk SSSR 194 (1970), 750-753. MR 0271324 (42:6207); English translation in Soviet Math. Dokl. 11 (1970), 1273-1276.
  • 23. V. Ya. Gutljanskĭ, Parametric representations and extremal problems in the theory of univalent functions (in Russian), Dissertation Dokt. Fiz.-Mat. Nauk, Mat. Inst. Akad. Nauk Ukrain. SSR, Kiev, 1972,
  • 24. F. Holland, The extreme points of a class of functions with positive real part, Math. Ann. 202 (1973), 85-87. MR 0335782 (49:562)
  • 25. Y. Komatu, Untersuchungen über konforme Abbildung von zweifach zusammenhängenden Gebieten (in German), Proc. Phys.-Math. Soc. Japan (3) 25 (1943), 1-42. MR 0016129 (7,514e). Avaliable via Journal@rchive, http://www.journalarchive.jst.go.jp
  • 26. Y. Komatu, Darstellungen der in einem Kreisringe analytischen Funktionen nebst den Anwendungen auf konforme Abbildung über Polygonalringgebiete, Jap. J. Math. 19 (1945), 203-215. MR 0014449 (7,287b)
  • 27. Y. Komatu, On conformal slit mapping of multiply-connected domains, Proc. Japan Acad. 26 (1950), no. 7, 26-31. MR 0046437 (13,734c)
  • 28. P. P. Kufarev, On one-parameter families of analytic functions (in Russian. English summary), Rec. Math. [Mat. Sbornik] N.S. 13 (55) (1943), 87-118. MR 0013800 (7:201g)
  • 29. P. P. Kufarev, V. V. Sobolev, and L. V. Sporyševa, A certain method of investigation of extremal problems for functions that are univalent in the half-plane (in Russian), Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 200 (1968), 142-164. MR 0257336 (41:1987)
  • 30. J. Kurzweil, Ordinary differential equations, translated from the Czech by Michal Basch, Studies in Applied Mechanics, 13, Elsevier, Amsterdam, 1986. MR 0929466 (88m:34001)
  • 31. M. P. Kuvaev and P. P. Kufarev, An equation of Löwner's type for multiply connected regions (in Russian), Tomskiĭ Gos. Univ. Uč. Zap. Mat. Meh. 25 (1955), 19-34. MR 0087734 (19,401f)
  • 32. G. F. Lawler, Conformal invariance and 2D statistical physics, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 1, 35-54. MR 2457071 (2010a:60283)
  • 33. N. A. Lebedev, On parametric representation of functions regular and univalent in a ring (in Russian), Dokl. Akad. Nauk SSSR (N.S.) 103 (1955), 767-768. MR 0072950 (17,356f)
  • 34. E. P. Li, On the theory of univalent functions on a circular ring (in Russian), Doklady Akad. Nauk SSSR (N.S.) 92 (1953), 475-477. MR 0059357 (15,516d)
  • 35. K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises (in German), Math. Ann. 89 (1923), 103-121. MR 1512136
  • 36. I. Markina and A. Vasil'ev, Virasoro algebra and dynamics in the space of univalent function, in Five Lectures in Complex Analysis (Sevilla, Spain, 2008), 85-116, Contemp. Math., 525, Amer. Math. Soc., Providence, RI, 2010. MR 2683220 (2011i:81189)
  • 37. Ch. Pommerenke, Über die subordination analytischer funktionen (in German), J. Reine Angew Math. 218 (1965), 159-173. MR 0180669 (31:4900)
  • 38. Ch. Pommerenke, Univalent functions. With a chapter on quadratic differentials by Gerd Jensen, Vandenhoeck & Ruprecht, Göttingen, 1975. MR 0507768 (58:22526)
  • 39. G. Sansone, Equazioni Differenziali nel Campo Reale, Vol.2 (in Italian), Nicola Zanichelli, Bologna, 1949. MR 0030663 (11,32a)
  • 40. O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221-288. MR 1776084 (2001m:60227)
  • 41. D. Shoikhet, Semigroups in geometrical function theory, Kluwer Acad. Publ., Dordrecht, 2001. MR 1849612 (2002g:30012)
  • 42. J. Tsai, Loewner chains on the universal covering space of a Riemann surface, Preprint 2008. Avaliable on ArXiv 0812.3721
  • 43. T. Vaitsiakhovich, Boundary value problems for complex partial differential equations in a ring domain, Ph.D. Thesis, Freie Universität Berlin, 2008. Available on http://www.diss.fu-berlin.de, http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000003859.
  • 44. G. Valiron, Fonctions analytiques (in French), Presses Univ. France, Paris, 1954. MR 0061658 (15:861a)
  • 45. D. Zhan, Stochastic Loewner evolution in doubly connected domains, Probab. Theory Related Fields 129 (2004), no. 3, 340-380. MR 2128237 (2006b:82111)
  • 46. V. A. Zmorovič, On certain classes of analytic functions in a circular ring (in Russian), Mat. Sb. N.S. 40(82) (1956), 225-238. MR 0083042 (18,648h)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 30C35, 30C20, 30D05, 30C80, 34M15

Retrieve articles in all journals with MSC (2010): 30C35, 30C20, 30D05, 30C80, 34M15


Additional Information

Manuel D. Contreras
Affiliation: Camino de los Descubrimientos, s/n, Departamento de Matemática Aplicada II, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, 41092, Spain
Email: contreras@us.es

Santiago Díaz-Madrigal
Affiliation: Camino de los Descubrimientos, s/n, Departamento de Matemática Aplicada II, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, 41092, Spain
Email: madrigal@us.es

Pavel Gumenyuk
Affiliation: Department of Mathematics, University of Bergen, Johannes Brunsgate 12, Bergen 5008, Norway
Address at time of publication: Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 1. 00133 Roma, Italy
Email: Pavel.Gumenyuk@math.uib.no, gumenyuk@axp.mat.uniroma2.it

DOI: https://doi.org/10.1090/S0002-9947-2012-05718-7
Keywords: Univalent functions, annulus, Loewner chains, Loewner evolution, evolution family, parametric representation
Received by editor(s): November 18, 2010
Received by editor(s) in revised form: September 8, 2011
Published electronically: November 1, 2012
Additional Notes: The first and second authors were partially supported by the Ministerio de Ciencia e Innovación and the European Union (FEDER), project MTM2009-14694-C02-02
The authors were partially supported by the ESF Networking Programme “Harmonic and Complex Analysis and its Applications” and by La Consejería de Economía, Innovación y Ciencia de la Junta de Andalucía (research group FQM-133)
The third author was supported by a grant from Iceland, Liechtenstein, and Norway through the EEA Financial Mechanism. Supported and coordinated by Universidad Complutense de Madrid and by Instituto de Matemáticas de la Universidad de Sevilla. Partially supported by the Scandinavian Network “Analysis and Applications” (NordForsk), project #080151, and the Research Council of Norway, project #177355/V30
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society