Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Homogeneous matchbox manifolds


Authors: Alex Clark and Steven Hurder
Journal: Trans. Amer. Math. Soc. 365 (2013), 3151-3191
MSC (2010): Primary 57S10, 54F15, 37B10, 37B45; Secondary 57R05
DOI: https://doi.org/10.1090/S0002-9947-2012-05753-9
Published electronically: October 3, 2012
MathSciNet review: 3034462
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a homogeneous matchbox manifold is homeomorphic to a McCord solenoid, thereby proving a strong version of a conjecture of Fokkink and Oversteegen, which is a general form of a conjecture of Bing. A key step in the proof shows that if the foliation of a matchbox manifold has equicontinuous dynamics, then it is minimal. Moreover, we then show that a matchbox manifold with equicontinuous dynamics is homeomorphic to a weak solenoid. A result of Effros is used to conclude that a homogeneous matchbox manifold has equicontinuous dynamics, and the main theorem is a consequence. The proofs of these results combine techniques from the theory of foliations and pseudogroups, along with methods from topological dynamics and coding theory for pseudogroup actions. These techniques and results provide a framework for the study of matchbox manifolds in general, and exceptional minimal sets of smooth foliations.


References [Enhancements On Off] (What's this?)

  • 1. J.M. Aarts, C.L. Hagopian and L.G. Oversteegen,
    The orientability of matchbox manifolds,
    Pacific. J. Math., 150:1-12, 1991. MR 1120708 (92h:54044)
  • 2. J. Auslander,
    Minimal flows and their extensions,
    North-Holland Mathematics Studies, Vol. 153,
    Notas de Matemática [Mathematical Notes], 122,
    North-Holland Publishing Co., Amsterdam, 1988. MR 956049 (89m:54050)
  • 3. E. Akin, J. Auslander and E. Glasner,
    The topological dynamics of Ellis actions,
    Mem. Amer. Math. Soc., Vol. 195, 2008. MR 2437846 (2010b:37013)
  • 4. J. Álvarez López and A. Candel,
    Equicontinuous foliated spaces,
    Math. Z., 263:725-774, 2009. MR 2551597 (2010i:53040)
  • 5. F.D. Ancel,
    An alternative proof and applications of a theorem of E. G. Effros,
    Michigan Math. Jour., 34:39-55, 1987. MR 873018 (88h:54058)
  • 6. J. Anderson and I. Putnam,
    Topological invariants for substitution tilings and their associated $ C\sp *$-algebras,
    Ergodic Theory Dyn. Syst., 18:509-537, 1998. MR 1631708 (2000a:46112)
  • 7. O. Attie and S. Hurder,
    Manifolds which cannot be leaves of foliations,
    Topology, 35(2):335-353, 1996. MR 1380502 (96m:57037)
  • 8. R. Benedetti and J.-M. Gambaudo,
    On the dynamics of $ \mathbb{G}$-solenoids. Applications to Delone sets,
    Ergodic Theory Dyn. Syst., 23:673-691, 2003. MR 1992658 (2004f:37019)
  • 9. R.H. Bing,
    A simple closed curve is the only homogeneous bounded plane continuum that contains an arc,
    Canad. J. Math., 12:209-230, 1960. MR 0111001 (22:1869)
  • 10. R. Bishop and R. Crittenden,
    Geometry of manifolds
    (reprint of the 1964 original),
    AMS Chelsea Publishing, Providence, RI, 2001. MR 1852066 (2002d:53001)
  • 11. C. Camacho and A. Lins Neto,
    Geometric Theory of Foliations,
    Translated from the Portuguese by Sue E. Goodman,
    Progress in Mathematics, Birkhäuser Boston, MA, 1985. MR 824240 (87a:57029)
  • 12. A. Candel and L. Conlon,
    Foliations I, Grad. Studies in Math., vol. 23,
    Amer. Math. Soc., Providence, RI, 2000. MR 1732868 (2002f:57058)
  • 13. A. Clark,
    A generalization of Hagopian's theorem and exponents,
    Topology Appl., 117:273-283, 2002. MR 1874090 (2002k:54038)
  • 14. A. Clark and R. Fokkink,
    Embedding solenoids,
    Fund. Math., 181:111-124, 2004. MR 2070666 (2006d:37025)
  • 15. A. Clark, R. Fokkink and O. Lukina,
    The Schreier continuum and ends,
    submitted 2010.
  • 16. A. Clark and S. Hurder,
    Embedding solenoids in foliations,
    Topology Appl., 158:1249-1270, 2011. MR 2806360
  • 17. A. Clark, S. Hurder and O. Lukina,
    Voronoi tessellations for matchbox manifolds,
    Topology Proceedings, 41:167-259, 2013, to appear.
  • 18. M. do Carmo,
    Riemannian geometry,
    Translated from the second Portuguese edition by Francis Flaherty,
    Birkhäuser Boston Inc., Boston, 1992. MR 1138207 (92i:53001)
  • 19. E.G. Effros,
    Transformation groups and $ C^*$-algebras,
    Annals of Math. (2), 81:38-55, 1965. MR 0174987 (30:5175)
  • 20. D. Ellis, R. Ellis and M.  Nerurkar,
    The topological dynamics of semigroup actions,
    Trans. Amer. Math. Soc., 353:1279-1320 (electronic), 2001. MR 1806740 (2001m:54041)
  • 21. D.B.A. Epstein, K.C. Millet, and D. Tischler,
    Leaves without holonomy,
    Jour. London Math. Soc., 16:548-552, 1977. MR 0464259 (57:4193)
  • 22. R. Fokkink and L. Oversteegen,
    Homogeneous weak solenoids,
    Trans. Amer. Math. Soc., 354:3743-3755, 2002. MR 1911519 (2003f:54083)
  • 23. A. Forrest, J. Hunton and J. Kellendonk,
    Topological invariants for projection method patterns,
    Mem. Amer. Math. Soc., Vol. 159, 2002. MR 1922206 (2003j:37024)
  • 24. H.  Furstenberg,
    The structure of distal flows,
    Amer. J. Math., 85:477-515, 1963. MR 0157368 (28:602)
  • 25. A. Haefliger,
    Groupoïdes d'holonomie et classifiants,
    In Transversal structure of foliations (Toulouse, 1982),
    Astérisque, No. 116, Société Mathématique de France, 1984:70-97. MR 755163 (86c:57026a)
  • 26. C. Hagopian,
    A characterization of solenoids,
    Pacific J. Math., 68:425-435, 1977. MR 0458381 (56:16584)
  • 27. M. Hirsch,
    A stable analytic foliation with only exceptional minimal sets, in Dynamical Systems, Warwick, 1974,
    Lect. Notes in Math., 468: 9-10, Springer-Verlag, 1975.
  • 28. S. Hurder,
    Coarse geometry of foliations,
    In Geometric Study of Foliations, Tokyo, 1993 (eds. Mizutani et al.),
    World Scientific Publishing Co. Inc., River Edge, N.J., 1994, 35-96. MR 1363719 (96j:57031)
  • 29. E.  Lindenstrauss,
    Measurable distal and topological distal systems,
    Ergodic Theory Dynam. Systems, 19:1063-1076, 1999. MR 1709430 (2000f:37005)
  • 30. S. Mardešić,
    Strong Shape and Homology,
    Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. MR 1740831 (2001e:55006)
  • 31. C. McCord,
    Inverse limit sequences with covering maps,
    Trans. Amer. Math. Soc., 114:197-209, 1965. MR 0173237 (30:3450)
  • 32. J. Milnor,
    Foliations and Foliated Vector Bundles,
    in Collected Papers of John Milnor: IV. Homotopy, Homology and Manifolds, ed. J. McCleary,
    American Mathematical Society, Providence, RI, 2009, pages 279-320.
    Updated version of 1969 Lecture Notes, MIT.
  • 33. M. Mislove and J.T. Rogers, Jr.,
    Local product structures on homogeneous continua,
    Topology Appl.,31:259-267, 1989. MR 997493 (90m:54044a)
  • 34. I. Moerdijk and J. Mrcun,
    Introduction to foliations and Lie groupoids,
    Cambridge Studies in Advanced Mathematics, Vol. 91, 2003. MR 2012261 (2005c:58039)
  • 35. P. Molino,
    Riemannian foliations,
    Translated from the French by Grant Cairns, with appendices by Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu,
    Birkhäuser Boston Inc., Boston, MA, 1988. MR 932463 (89b:53054)
  • 36. C.C. Moore and C. Schochet,
    Analysis on Foliated Spaces,
    Math. Sci. Res. Inst. Publ. vol. 9, Second Edition,
    Cambridge University Press, New York, 2006. MR 2202625 (2006i:58035)
  • 37. J. Plante,
    Measure preserving pseudogroups and a theorem of Sacksteder,
    Ann. Inst. Fourier (Grenoble), 25:237-249, 1975. MR 0377931 (51:14100)
  • 38. J. Plante,
    Foliations with measure-preserving holonomy,
    Ann. of Math. (2), 102:327-361, 1975. MR 0391125 (52:11947)
  • 39. J. Prajs,
    Homogeneous continua in Euclidean $ (n+1)$-space which contain an $ n$-cube are $ n$-manifolds,
    Trans. Amer. Math. Soc., 318:143-148, 1990. MR 943307 (90f:54055)
  • 40. G. Reeb,
    Sur certaines propriétés topologiques des variétés feuilletées,
    Act. Sci. et Ind. 1183:91-154, 1952. MR 0055692 (14:1113a)
  • 41. G. Reeb,
    Sur les structures feuilletées de co-dimension un et sur un théorème de M. A. Denjoy,
    Ann. Inst. Fourier (Grenoble), 11:185-200, 1961. MR 0131283 (24:A1135)
  • 42. J. Rogers, Jr.,
    Inverse limits of manifolds with covering maps,
    In Topology Conference (Proc. General Topology Conf., Emory Univ., Atlanta, Ga., 1970),
    Dept. Math., Emory Univ., Atlanta, Ga., 1970, 81-85. MR 0341376 (49:6127)
  • 43. J.T. Rogers and J.L. Tollefson,
    Involutions on solenoidal spaces,
    Fund. Math., 73:11-19, 1971/72. MR 0296923 (45:5982)
  • 44. R. Sacksteder,
    On the existence of exceptional leaves in foliations of co-dimension one,
    Ann. Inst. Fourier (Grenoble), 14:221-225, 1964. MR 0174060 (30:4267)
  • 45. R. Sacksteder,
    Foliations and pseudogroups,
    Amer. J. Math., 87:79-102, 1965. MR 0174061 (30:4268)
  • 46. R. Sacksteder and J. Schwartz,
    On the existence of exceptional leaves in foliations of co-dimension one,
    Ann. Inst. Fourier (Grenoble), 14:221-225, 1964. MR 0174060 (30:4267)
  • 47. R. Schori,
    Inverse limits and homogeneity,
    Trans. Amer. Math. Soc., 124:533-539, 1966. MR 0198416 (33:6574)
  • 48. M. Senechal,
    Quasicrystals and geometry,
    Cambridge University Press, Cambridge, 1995. MR 1340198 (96c:52038)
  • 49. E.S. Thomas, Jr.,
    One-dimensional minimal sets,
    Topology, 12:233-242, 1973. MR 0326780 (48:5123)
  • 50. G. Ungar,
    On all kinds of homogeneous spaces,
    Trans. Amer. Math. Soc., 212:393-400, 1975. MR 0385825 (52:6684)
  • 51. J. van Mill,
    A note on the Effros theorem,
    The American Mathematical Monthly, 111:801-806, 2004. MR 2104051 (2005g:54069)
  • 52. J. van Mill,
    Homogeneous spaces and transitive actions by Polish groups,
    Israel J. Math., 165:133-159, 2008. MR 2403618 (2009d:22027)
  • 53. W. Veech,
    Point-distal flows,
    Amer. J. Math., 92:205-242, 1970. MR 0267560 (42:2462)
  • 54. N.I. Zhukova,
    Ends of generic leaves of complete Cartan foliations,
    Mat. Zametki, 87:316-320, 2010.
    English translation: Mathematical Notes, 87:293-297, 2010. MR 2731484 (2011j:57043)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57S10, 54F15, 37B10, 37B45, 57R05

Retrieve articles in all journals with MSC (2010): 57S10, 54F15, 37B10, 37B45, 57R05


Additional Information

Alex Clark
Affiliation: Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
Email: adc20@le.ac.uk

Steven Hurder
Affiliation: Department of Mathematics, University of Illinois at Chicago, 322 SEO (m/c 249), 851 S. Morgan Street, Chicago, Illinois 60607-7045
Email: hurder@uic.edu

DOI: https://doi.org/10.1090/S0002-9947-2012-05753-9
Keywords: Solenoids, matchbox manifold, laminations, equicontinuous foliation, Effros Theorem, foliations
Received by editor(s): June 28, 2010
Received by editor(s) in revised form: June 8, 2011, July 12, 2011, and October 24, 2011
Published electronically: October 3, 2012
Additional Notes: Both authors were supported by NWO travel grant 040.11.132
The first author was supported in part by EPSRC grant EP/G006377/1
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society