Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Uniqueness results for one-dimensional Schrödinger operators with purely discrete spectra


Authors: Jonathan Eckhardt and Gerald Teschl
Journal: Trans. Amer. Math. Soc. 365 (2013), 3923-3942
MSC (2010): Primary 34B20, 34L05; Secondary 34B24, 47A10
Published electronically: November 27, 2012
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide an abstract framework for singular one-dimensional Schrödinger operators with purely discrete spectra to show when the spectrum plus norming constants determine such an operator completely. As an example we apply our findings to prove new uniqueness results for perturbed quantum mechanical harmonic oscillators. In addition, we also show how to establish a Hochstadt-Lieberman type result for these operators. Our approach is based on the singular Weyl-Titchmarsh-Kodaira theory which is extended to cover the present situation.


References [Enhancements On Off] (What's this?)

  • 1. R. P. Boas, Entire functions, Academic Press, New York, 1954. MR 0068627 (16:914f)
  • 2. D. S. Chelkak, Asymptotics of the spectral data of a harmonic oscillator perturbed by a potential with finite energy, J. Math. Sci. (N. Y.) 129, 2053-4082 (2005). MR 2037541 (2004k:34175)
  • 3. D. S. Chelkak, P. Kargaev and E. Korotyaev, An inverse problem for an harmonic oscillator perturbed by potential: Uniqueness, Lett. Math. Phys. 64, 7-21 (2003). MR 1997715 (2004d:34023)
  • 4. D. S. Chelkak, P. Kargaev and E. Korotyaev, An inverse problem for harmonic oscillator perturbed by potential, characterization, Commun. Math. Phys. 249, 133-196 (2004). MR 2077254 (2005h:81120)
  • 5. J. Eckhardt, Inverse uniqueness results for Schrödinger operators using de Branges theory, Complex Anal. Oper. Theory (to appear), DOI: 10.1007/s11785-012-0265-3.
  • 6. C. Fulton, Titchmarsh-Weyl m-functions for second order Sturm-Liouville problems, Math. Nachr. 281, 1417-1475 (2008). MR 2454944 (2009f:34071)
  • 7. C. Fulton and H. Langer, Sturm-Liouville operators with singularities and generalized Nevanlinna functions, Complex Anal. Oper. Theory 4, 179-243 (2010). MR 2652523 (2011i:34053)
  • 8. F. Gesztesy, A complete spectral characterization of the double commutation method, J. Funct. Anal. 117, 401-446 (1993). MR 1244942 (94m:47093)
  • 9. F. Gesztesy and B. Simon, Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators, Trans. Amer. Math. Soc. 348, 349-373 (1996). MR 1329533 (96e:34030)
  • 10. F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum, Trans. Amer. Math. Soc. 352, 2765-2787 (2000). MR 1694291 (2000j:34019)
  • 11. F. Gesztesy, B. Simon, and G. Teschl, Spectral deformations of one-dimensional Schrödinger operators, J. Anal. Math. 70, 267-324 (1996). MR 1444263 (98m:34171)
  • 12. F. Gesztesy and M. Zinchenko, On spectral theory for Schrödinger operators with strongly singular potentials, Math. Nachr. 279, 1041-1082 (2006). MR 2242965 (2007h:47076)
  • 13. H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math. 34, 676-680 (1978). MR 0470319 (57:10077)
  • 14. L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73, 943-949 (1967). MR 0226387 (37:1977)
  • 15. M. Horváth, On the inverse spectral theory of Schrödinger and Dirac operators, Trans. Amer. Math. Soc. 353, 4155-4171 (2001). MR 1837225 (2002e:34144)
  • 16. R. O. Hryniv and Y. V. Mykytyuk, Half-inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems 20, 1423-1444 (2004). MR 2109127 (2005i:34012)
  • 17. I. S. Kac, The existence of spectral functions of generalized second order differential systems with boundary conditions at the singular end, AMS Translations (2) 62, 204-262 (1967).
  • 18. A. Khodakovsky, Inverse spectral problem with partial information on the potential: The case of the whole real line, Commun. Math. Phys. 210, 399-411 (2000). MR 1776838 (2001h:34024)
  • 19. K. Kodaira, The eigenvalue problem for ordinary differential equations of the second order and Heisenberg's theory of $ S$-matrices, Amer. J. Math. 71, 921-945 (1949). MR 0033421 (11:438c)
  • 20. A. Kostenko and G. Teschl, On the singular Weyl-Titchmarsh function of perturbed spherical Schrödinger operators, J. Diff. Eqs. 250, 3701-3739 (2011). MR 2773183 (2012b:34066)
  • 21. A. Kostenko, A. Sakhnovich, and G. Teschl, Inverse eigenvalue problems for perturbed spherical Schrödinger operators, Inverse Problems 26, 105013, 14pp. (2010). MR 2719774 (2011g:34026)
  • 22. A. Kostenko, A. Sakhnovich, and G. Teschl, Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials, Int. Math. Res. Not. 2012, 1699-1747 (2012). MR 2920828
  • 23. A. Kostenko, A. Sakhnovich, and G. Teschl, Commutation methods for Schrödinger operators with strongly singular potentials, Math. Nachr. 285, 392-410 (2012).
  • 24. P. Kurasov and A. Luger, An operator theoretic interpretation of the generalized Titchmarsh-Weyl coefficient for a singular Sturm-Liouville problem, Math. Phys. Anal. Geom. Math. 14, 115-151 (2011). MR 2802457
  • 25. B. Ya. Levin, Lectures on Entire Functions, Transl. Math. Monographs 150, Amer. Math. Soc., Providence, RI, 1996. MR 1400006 (97j:30001)
  • 26. B. M. Levitan, Sturm-Liouville operators on the entire real axis with the same discrete spectrum, Math. USSR Sbornik 60, 77-106 (1988). MR 883914 (88c:34031)
  • 27. H. P. McKean and E. Trubowitz, The spectral class of the quantum-mechanical harmonic oscillator, Commun. Math. Phys. 82, 471-495 (1982). MR 641910 (83e:34034)
  • 28. L. Sakhnovich, Half-inverse problems on the finite interval, Inverse Problems 17, 527-532 (2001). MR 1843279
  • 29. G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators, Graduate Studies in Mathematics, Amer. Math. Soc., Rhode Island, 2009. MR 2499016 (2010h:81002)
  • 30. J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258, Springer, Berlin, 1987. MR 923320 (89b:47070)
  • 31. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge University Press, Cambridge, 1927. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 34B20, 34L05, 34B24, 47A10

Retrieve articles in all journals with MSC (2010): 34B20, 34L05, 34B24, 47A10


Additional Information

Jonathan Eckhardt
Affiliation: Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Wien, Austria
Email: jonathan.eckhardt@univie.ac.at

Gerald Teschl
Affiliation: Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Wien, Austria — and — International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien, Austria
Email: Gerald.Teschl@univie.ac.at

DOI: http://dx.doi.org/10.1090/S0002-9947-2012-05821-1
PII: S 0002-9947(2012)05821-1
Keywords: Schr\"odinger operators, inverse spectral theory, discrete spectra
Received by editor(s): October 11, 2011
Received by editor(s) in revised form: February 28, 2012
Published electronically: November 27, 2012
Additional Notes: This research was supported by the Austrian Science Fund (FWF) under Grant No. Y330
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.