Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Borel conjecture and dual Borel conjecture

Authors: Martin Goldstern, Jakob Kellner, Saharon Shelah and Wolfgang Wohofsky
Journal: Trans. Amer. Math. Soc. 366 (2014), 245-307
MSC (2010): Primary 03E35; Secondary 03E17, 28E15
Published electronically: August 19, 2013
MathSciNet review: 3118397
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that it is consistent that the Borel Conjecture and the dual Borel Conjecture hold simultaneously.

References [Enhancements On Off] (What's this?)

  • [BJ95] Tomek Bartoszyński and Haim Judah.
    Set theory.
    A K Peters Ltd., Wellesley, MA, 1995.
    On the structure of the real line. MR 1350295 (96k:03002)
  • [Bla88] Andreas Blass.
    Selective ultrafilters and homogeneity.
    Ann. Pure Appl. Logic, 38(3):215-255, 1988. MR 942525 (89h:03081)
  • [Bla11] Andreas Blass(
    Finite support iterations of $ \sigma $-centered forcing notions.
    MathOverflow, 2011. (version: 2011-12-23).
  • [Bor19] E. Borel.
    Sur la classification des ensembles de mesure nulle.
    Bull. Soc. Math. France, 47:97-125, 1919. MR 1504785
  • [BS03] Tomek Bartoszynski and Saharon Shelah.
    Strongly meager sets of size continuum.
    Arch. Math. Logic, 42(8):769-779, 2003. MR 2020043 (2004m:03170)
  • [BS10] Tomek Bartoszynski and Saharon Shelah.
    Dual Borel conjecture and Cohen reals.
    J. Symbolic Logic, 75(4):1293-1310, 2010. MR 2767969
  • [Car93] Timothy J. Carlson.
    Strong measure zero and strongly meager sets.
    Proc. Amer. Math. Soc., 118(2):577-586, 1993. MR 1139474 (94b:03086)
  • [GK06] Martin Goldstern and Jakob Kellner.
    New reals: can live with them, can live without them.
    MLQ Math. Log. Q., 52(2):115-124, 2006. MR 2214624 (2007a:03064)
  • [GMS73] Fred Galvin, Jan Mycielski, and Robert M. Solovay.
    Strong measure zero sets.
    Notices of the AMS, pages A-280, 1973.
  • [Gol93] Martin Goldstern.
    Tools for your forcing construction.
    In Set theory of the reals (Ramat Gan, 1991), volume 6 of Israel Math. Conf. Proc., pages 305-360. Bar-Ilan Univ., Ramat Gan, 1993. MR 1234283 (94h:03102)
  • [Jec03] Thomas Jech.
    Set theory.
    Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
    The third millennium edition, revised and expanded. MR 1940513 (2004g:03071)
  • [JS90] Haim Judah and Saharon Shelah.
    The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing).
    J. Symbolic Logic, 55(3):909-927, 1990. MR 1071305 (91g:03097)
  • [Kel12] Jakob Kellner.
    Non-elementary proper forcing.
    To appear in: Rend. Semin. Mat. Univ. Politec. Torino, 2012.
  • [KS05] Jakob Kellner and Saharon Shelah.
    Preserving preservation.
    J. Symbolic Logic, 70(3):914-945, 2005. MR 2155272 (2006d:03089)
  • [Kun80] Kenneth Kunen.
    Set theory, volume 102 of Studies in Logic and the Foundations of Mathematics.
    North-Holland Publishing Co., Amsterdam, 1980.
    An introduction to independence proofs. MR 597342 (82f:03001)
  • [Lav76] Richard Laver.
    On the consistency of Borel's conjecture.
    Acta Math., 137(3-4):151-169, 1976. MR 0422027 (54:10019)
  • [Paw96a] Janusz Pawlikowski.
    A characterization of strong measure zero sets.
    Israel J. Math., 93:171-183, 1996. MR 1380640 (97f:28003)
  • [Paw96b] Janusz Pawlikowski.
    Laver's forcing and outer measure.
    In Set theory (Boise, ID, 1992-1994), volume 192 of Contemp. Math., pages 71-76. Amer. Math. Soc., Providence, RI, 1996. MR 1367136 (96k:03121)
  • [She98] Saharon Shelah.
    Proper and improper forcing.
    Perspectives in Mathematical Logic. Springer-Verlag, Berlin, second edition, 1998. MR 1623206 (98m:03002)
  • [She04] Saharon Shelah.
    Properness without elementaricity.
    J. Appl. Anal., 10(2):169-289, 2004. MR 2115943 (2005m:03097)
  • [She06] Saharon Shelah.
    Non-Cohen oracle C.C.C.
    J. Appl. Anal., 12(1):1-17, 2006. MR 2243849 (2007f:03073)
  • [She10] Saharon Shelah.
    Large continuum, oracles.
    Cent. Eur. J. Math., 8(2):213-234, 2010. MR 2610747 (2011g:03127)
  • [Sie28] W. Sierpiński.
    Sur un ensemble non dénombrable, dont toute image continue est de mesure nulle.
    Fund. Math., 11:302-304, 1928.
  • [Tal94] Franklin D. Tall.
    $ \sigma $-centred forcing and reflection of (sub)metrizability.
    Proc. Amer. Math. Soc., 121(1):299-306, 1994. MR 1179593

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 03E35, 03E17, 28E15

Retrieve articles in all journals with MSC (2010): 03E35, 03E17, 28E15

Additional Information

Martin Goldstern
Affiliation: Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria

Jakob Kellner
Affiliation: Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Währinger Straße 25, 1090 Wien, Austria

Saharon Shelah
Affiliation: Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel — and — Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08854

Wolfgang Wohofsky
Affiliation: Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria

Received by editor(s): May 28, 2011
Received by editor(s) in revised form: December 27, 2011
Published electronically: August 19, 2013
Additional Notes: The authors gratefully acknowledge the following partial support: US National Science Foundation Grant No. 0600940 (all authors); US-Israel Binational Science Foundation grant 2006108 (third author); Austrian Science Fund (FWF): P21651 and P23875 and EU FP7 Marie Curie grant PERG02-GA-2207-224747 (second and fourth authors); FWF grant P21968 (first and fourth authors); ÖAW Doc fellowship (fourth author). This is publication 969 of the third author
Dedicated: Dedicated to the memory of Richard Laver (1942–2012)
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society