Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

A generalized Koszul theory and its application


Author: Liping Li
Journal: Trans. Amer. Math. Soc. 366 (2014), 931-977
MSC (2010): Primary 18G15, 16G10
DOI: https://doi.org/10.1090/S0002-9947-2013-05891-6
Published electronically: October 28, 2013
MathSciNet review: 3130322
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a graded algebra. In this paper we develop a generalized Koszul theory by assuming that $ A_0$ is self-injective instead of semisimple and generalize many classical results. The application of this generalized theory to directed categories and finite EI categories is described.


References [Enhancements On Off] (What's this?)

  • [1] István Ágoston, Vlastimil Dlab, and Erzsébet Lukács, Quasi-hereditary extension algebras, Algebr. Represent. Theory 6 (2003), no. 1, 97-117. MR 1960515 (2004c:16010), https://doi.org/10.1023/A:1022373620471
  • [2] István Ágoston, Vlastimil Dlab, and Erzsébet Lukács, Standardly stratified extension algebras, Comm. Algebra 33 (2005), no. 5, 1357-1368. MR 2149063 (2006d:16015), https://doi.org/10.1081/AGB-200060498
  • [3] Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. MR 1476671 (98e:16011)
  • [4] Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no. 2, 473-527. MR 1322847 (96k:17010), https://doi.org/10.1090/S0894-0347-96-00192-0
  • [5] D. J. Benson, Representations and cohomology. I, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1998. Basic representation theory of finite groups and associative algebras. MR 1644252 (99f:20001a)
  • [6] Edward Cline, Brian Parshall, and Leonard Scott, Stratifying endomorphism algebras, Mem. Amer. Math. Soc. 124 (1996), no. 591, viii+119. MR 1350891 (97h:16012)
  • [7] Vlastimil Dlab, Quasi-hereditary algebras revisited, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 4 (1996), no. 2, 43-54. Representation theory of groups, algebras, and orders (Constanţa, 1995). MR 1428453 (97m:16017)
  • [8] Yuriy Drozd and Volodymyr Mazorchuk, Koszul duality for extension algebras of standard modules, J. Pure Appl. Algebra 211 (2007), no. 2, 484-496. MR 2341265 (2008j:16083), https://doi.org/10.1016/j.jpaa.2007.01.014
  • [9] Edward L. Green and Roberto Martínez Villa, Koszul and Yoneda algebras, Representation theory of algebras (Cocoyoc, 1994) CMS Conf. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 1996, pp. 247-297. MR 1388055 (97c:16012)
  • [10] Edward L. Green and Roberto Martínez-Villa, Koszul and Yoneda algebras. II, Algebras and modules, II (Geiranger, 1996) CMS Conf. Proc., vol. 24, Amer. Math. Soc., Providence, RI, 1998, pp. 227-244. MR 1648629 (99k:16091)
  • [11] Edward L. Green, Idun Reiten, and Øyvind Solberg, Dualities on generalized Koszul algebras, Mem. Amer. Math. Soc. 159 (2002), no. 754, xvi+67. MR 1921583 (2004b:16042)
  • [12] Liping Li, A characterization of finite EI categories with hereditary category algebras, J. Algebra 345 (2011), 213-241. MR 2842063 (2012i:18007), https://doi.org/10.1016/j.jalgebra.2011.07.011
  • [13] Liping Li, Extension algebras of standard modules, Comm. Algebra 41 (2013), 3445-3464, DOI 10.1080/00927872.2012.688155.
  • [14] Liping Li, Algebras stratified for all linear orders, Alg. Repn. Theory, 16 (2013), 1085-1108. DOI 10.1007/s10468-012-9347-1. MR 3079794
  • [15] Dag Madsen, Ext-algebras and derived equivalences, Colloq. Math. 104 (2006), no. 1, 113-140. MR 2195242 (2006m:16059), https://doi.org/10.4064/cm104-1-8
  • [16] Dag Oskar Madsen, On a common generalization of Koszul duality and tilting equivalence, Adv. Math. 227 (2011), no. 6, 2327-2348. MR 2807091 (2012d:16081), https://doi.org/10.1016/j.aim.2011.05.003
  • [17] Roberto Martínez-Villa, Introduction to Koszul algebras, Rev. Un. Mat. Argentina 48 (2007), no. 2, 67-95 (2008). MR 2388890 (2009a:16054)
  • [18] Volodymyr Mazorchuk, Serge Ovsienko, and Catharina Stroppel, Quadratic duals, Koszul dual functors, and applications, Trans. Amer. Math. Soc. 361 (2009), no. 3, 1129-1172. MR 2457393 (2010c:16029), https://doi.org/10.1090/S0002-9947-08-04539-X
  • [19] Volodymyr Mazorchuk, Koszul duality for stratified algebras. I. Balanced quasi-hereditary algebras, Manuscripta Math. 131 (2010), no. 1-2, 1-10. MR 2574987 (2011e:16053), https://doi.org/10.1007/s00229-009-0313-0
  • [20] Volodymyr Mazorchuk, Koszul duality for stratified algebras II. Standardly stratified algebras, J. Aust. Math. Soc. 89 (2010), no. 1, 23-49. MR 2727062 (2012b:16070), https://doi.org/10.1017/S1446788710001497
  • [21] Victor Reiner and Dumitru Ioan Stamate, Koszul incidence algebras, affine semigroups, and Stanley-Reisner ideals, Adv. Math. 224 (2010), no. 6, 2312-2345. MR 2652208 (2011f:06003), https://doi.org/10.1016/j.aim.2010.02.005
  • [22] Peter Webb, Standard stratifications of EI categories and Alperin's weight conjecture, J. Algebra 320 (2008), no. 12, 4073-4091. MR 2457810 (2009m:16029), https://doi.org/10.1016/j.jalgebra.2006.03.052
  • [23] D. Woodcock, Cohen-Macaulay complexes and Koszul rings, J. London Math. Soc. (2) 57 (1998), no. 2, 398-410. MR 1644229 (99g:13025), https://doi.org/10.1112/S0024610798005717
  • [24] Fei Xu, Representations of categories and their applications, J. Algebra 317 (2007), no. 1, 153-183. MR 2360144 (2008m:18024), https://doi.org/10.1016/j.jalgebra.2007.07.021

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 18G15, 16G10

Retrieve articles in all journals with MSC (2010): 18G15, 16G10


Additional Information

Liping Li
Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Address at time of publication: Department of Mathematics, University of California, Riverside, California 92521
Email: lixxx480@math.umn.edu, lipingli@math.ucr.edu

DOI: https://doi.org/10.1090/S0002-9947-2013-05891-6
Received by editor(s): September 23, 2011
Received by editor(s) in revised form: June 6, 2012
Published electronically: October 28, 2013
Additional Notes: The author wants to express great appreciation to his thesis advisor, Professor Peter Webb, for the proposal to develop a generalized Koszul theory, and the invaluable suggestions and contributions provided in numerous discussions
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society