Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Delta-structures on mapping class groups and braid groups


Authors: A. J. Berrick, E. Hanbury and J. Wu
Journal: Trans. Amer. Math. Soc. 366 (2014), 1879-1903
MSC (2010): Primary 20F36; Secondary 55Q40, 55R80, 55U10, 57M07, 57S05
DOI: https://doi.org/10.1090/S0002-9947-2013-05889-8
Published electronically: November 25, 2013
MathSciNet review: 3152716
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a Delta-group structure on the mapping class groups of surfaces, and show that it is compatible with the Delta-group structures of the braid groups of surfaces given by Berrick-Cohen-Wong-Wu. We then prove an isomorphism theorem relating these two Delta-groups. This is the first of a pair of papers on this topic.


References [Enhancements On Off] (What's this?)

  • 1. A. J. Berrick, F. R. Cohen, Y. L. Wong and J. Wu: Configurations, braids and homotopy groups, J. Amer. Math. Soc. 19 (2006), 265-326. MR 2188127 (2007e:20073)
  • 2. A. J. Berrick and E. Hanbury: Simplicial structures and normal forms for mapping class groups and braid groups, preprint (2012).
  • 3. A. J. Berrick, E. Hanbury and J. Wu: Brunnian subgroups of mapping class groups and braid groups, Proc. London Math. Soc. 107 (2013), 875-906.
  • 4. F.R. Cohen: Introduction to configuration spaces and their applications, in Braids: Introductory Lectures on Braids, Configurations and Their Applications, IMS NUS Lect. Notes Series 19, World Scientific (Singapore, 2010), 183-261. MR 2605307 (2011f:55034)
  • 5. F. R. Cohen and J. Wu: On braids, free groups and the loop space of the 2-sphere, in Algebraic Topology: Categorical Decompositions, Progress in Math. Tech. 215 (2004), 93-105. MR 2039761 (2005b:55011)
  • 6. F. R. Cohen and J. Wu: On braid groups and homotopy groups. Groups, homotopy and configuration spaces, Geom. Topol. Monogr., 13 (Coventry, 2008), 169-193. MR 2508205 (2010i:55016)
  • 7. A. Connes: Cohomologie cyclique et foncteurs $ \mathrm {Ext}^{n}$, C. R. Acad. Sci. Paris 296 (1983), 953-958. MR 777584 (86d:18007)
  • 8. C. J. Earle and J. Eells: A fibre bundle description of Teichmüller theory, J. Diff. Geom. 3 (1969), 19-43. MR 0276999 (43:2737a)
  • 9. C. J. Earle and A. Schatz: Teichmüller theory for surfaces with boundary, J. Diff. Geom. 4 (1970), 169-185. MR 0277000 (43:2737b)
  • 10. E. Fadell and L. Neuwirth: Configuration spaces, Math. Scand. 10 (1962) 111-118. MR 0141126 (25:4537)
  • 11. Z. Fiedorowicz and J.-L. Loday: Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. 326 (1991), 57-87. MR 998125 (91j:18018)
  • 12. M. W. Hirsch: Differential Topology. Graduate Texts in Math., No. 33. Springer-Verlag (New York-Heidelberg, 1976). MR 0448362 (56:6669)
  • 13. C. Kassel and V. Turaev: Braid Groups. With the graphical assistance of Olivier Dodane. Graduate Texts in Math., 247. Springer (New York, 2008). MR 2435235 (2009e:20082)
  • 14. J. Li and J. Wu: Artin braid groups and homotopy groups, Proc. London Math. Soc. 99 (2009), 521-556. MR 2551462 (2010k:55020)
  • 15. J.-L. Loday: Homologies diédrale et quaternionique, Adv. in Math. 66 (1987), 119-148. MR 917736 (89e:18024)
  • 16. R.S. Palais: Natural operations on differential forms, Trans. Amer. Math. Soc. 92 (1959), 125-141. MR 0116352 (22:7140)
  • 17. R. S. Palais: Local triviality of the restriction map for embeddings, Comment. Math. Helvetici 34 (1960), 305-312. MR 0123338 (23:A666)
  • 18. E. H. Spanier: Algebraic Topology, McGraw-Hill (New York, 1966). MR 0210112 (35:1007)
  • 19. N. Steenrod: The Topology of Fibre Bundles, Princeton Univ. Press (Princeton, NJ, 1951). MR 0039258 (12:522b)
  • 20. J. Wu: A braided simplicial group, Proc. London Math. Soc. 84 (2001), 645-662. MR 1888426 (2003e:20041)
  • 21. J. Wu: Combinatorial descriptions of homotopy groups of certain spaces, Math. Proc. Camb. Phil. Soc. 130 (2001), 489-513. MR 1816806 (2003e:55014)
  • 22. W. Zhang: Group operads and homotopy theory, preprint, 2011. arxiv.org/pdf/1111.7090.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 20F36, 55Q40, 55R80, 55U10, 57M07, 57S05

Retrieve articles in all journals with MSC (2010): 20F36, 55Q40, 55R80, 55U10, 57M07, 57S05


Additional Information

A. J. Berrick
Affiliation: Department of Mathematics, National University of Singapore, Singapore
Address at time of publication: Yale-NUS College, Singapore 138614, Singapore
Email: berrick@math.nus.edu.sg, berrick@yale-nus.edu.sg

E. Hanbury
Affiliation: Department of Mathematics, Durham University, Durham DH1 3LE, United Kingdom
Email: elizabeth.hanbury@durham.ac.uk

J. Wu
Affiliation: Department of Mathematics, National University of Singapore, Singapore
Email: matwuj@math.nus.edu.sg

DOI: https://doi.org/10.1090/S0002-9947-2013-05889-8
Received by editor(s): January 20, 2012
Received by editor(s) in revised form: May 1, 2012, and May 29, 2012
Published electronically: November 25, 2013
Additional Notes: The authors gratefully acknowledge the assistance of NUS research grants R-146-000-097-112, R-146-000-101-112 and R-146-000-137-112.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society