Singular Neumann problems and large-time behavior of solutions of noncoercive Hamilton-Jacobi equations

Authors:
Yoshikazu Giga, Qing Liu and Hiroyoshi Mitake

Journal:
Trans. Amer. Math. Soc. **366** (2014), 1905-1941

MSC (2010):
Primary 35B40, 35F25, 35F30, 49L25

Published electronically:
September 4, 2013

MathSciNet review:
3152717

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the large-time behavior of viscosity solutions of Hamilton-Jacobi equations with noncoercive Hamiltonian in a multidimensional Euclidean space. Our motivation comes from a model describing growing faceted crystals recently discussed by E. Yokoyama, Y. Giga and P. Rybka. Surprisingly, growth rates of viscosity solutions of these equations depend on the -variable. In a part of the space called the *effective domain*, growth rates are constant, but outside of this domain, they seem to be unstable. Moreover, on the boundary of the effective domain, the gradient with respect to the -variable of solutions blows up as time goes to infinity. Therefore, we are naturally led to study singular Neumann problems for stationary Hamilton-Jacobi equations. We establish the existence, stability and comparison results for singular Neumann problems and apply the results for a large-time asymptotic profile on the effective domain of viscosity solutions of Hamilton-Jacobi equations with noncoercive Hamiltonian.

**1.**Martino Bardi and Italo Capuzzo-Dolcetta,*Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations*, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. With appendices by Maurizio Falcone and Pierpaolo Soravia. MR**1484411****2.**Guy Barles and Francesca Da Lio,*On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations*, J. Math. Pures Appl. (9)**83**(2004), no. 1, 53–75 (English, with English and French summaries). MR**2023054**, 10.1016/S0021-7824(03)00070-9**3.**G. Barles, H. Ishii and H. Mitake, On the large time behavior of solutions of Hamilton-Jacobi equations associated with nonlinear boundary conditions, Arch. Ration. Mech. Anal.**204**(2012), 515-558.**4.**Guy Barles and Hiroyoshi Mitake,*A PDE approach to large-time asymptotics for boundary-value problems for nonconvex Hamilton-Jacobi equations*, Comm. Partial Differential Equations**37**(2012), no. 1, 136–168. MR**2864810**, 10.1080/03605302.2011.553645**5.**G. Barles and B. Perthame,*Discontinuous solutions of deterministic optimal stopping time problems*, RAIRO Modél. Math. Anal. Numér.**21**(1987), no. 4, 557–579 (English, with French summary). MR**921827****6.**Guy Barles and Jean-Michel Roquejoffre,*Ergodic type problems and large time behaviour of unbounded solutions of Hamilton-Jacobi equations*, Comm. Partial Differential Equations**31**(2006), no. 7-9, 1209–1225. MR**2254612**, 10.1080/03605300500361461**7.**G. Barles and Panagiotis E. Souganidis,*On the large time behavior of solutions of Hamilton-Jacobi equations*, SIAM J. Math. Anal.**31**(2000), no. 4, 925–939 (electronic). MR**1752423**, 10.1137/S0036141099350869**8.**E. N. Barron and R. Jensen,*Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians*, Comm. Partial Differential Equations**15**(1990), no. 12, 1713–1742. MR**1080619**, 10.1080/03605309908820745**9.**W. K. Burton, N. Cabrera, and F. C. Frank,*The growth of crystals and the equilibrium structure of their surfaces*, Philos. Trans. Roy. Soc. London. Ser. A.**243**(1951), 299–358. MR**0043005****10.**I. Capuzzo-Dolcetta and P.-L. Lions,*Hamilton-Jacobi equations with state constraints*, Trans. Amer. Math. Soc.**318**(1990), no. 2, 643–683. MR**951880**, 10.1090/S0002-9947-1990-0951880-0**11.**A. A. Chernov, Application of the method of characteristics to the theory of the growth from of crystals, Soviet Phys. - Crystal.**8**(1964), 401-405.**12.**A. A. Chernov, Stability of faceted shapes, J. Crystal Growth**24/25**(1974), 11-31.**13.**Andrea Davini and Antonio Siconolfi,*A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations*, SIAM J. Math. Anal.**38**(2006), no. 2, 478–502 (electronic). MR**2237158**, 10.1137/050621955**14.**Weinan E and Nung Kwan Yip,*Continuum theory of expitaxial crystal growth. I*, J. Statist. Phys.**104**(2001), no. 1-2, 211–253. MR**1925170**, 10.1023/A:1010361711825**15.**Lawrence C. Evans and Ronald F. Gariepy,*Measure theory and fine properties of functions*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR**1158660****16.**Albert Fathi,*Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens*, C. R. Acad. Sci. Paris Sér. I Math.**324**(1997), no. 9, 1043–1046 (French, with English and French summaries). MR**1451248**, 10.1016/S0764-4442(97)87883-4**17.**Albert Fathi,*Sur la convergence du semi-groupe de Lax-Oleinik*, C. R. Acad. Sci. Paris Sér. I Math.**327**(1998), no. 3, 267–270 (French, with English and French summaries). MR**1650261**, 10.1016/S0764-4442(98)80144-4**18.**Albert Fathi and Antonio Siconolfi,*PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians*, Calc. Var. Partial Differential Equations**22**(2005), no. 2, 185–228. MR**2106767**, 10.1007/s00526-004-0271-z**19.**Yoshikazu Giga,*Surface evolution equations*, Monographs in Mathematics, vol. 99, Birkhäuser Verlag, Basel, 2006. A level set approach. MR**2238463****20.**Yoshikazu Giga and Nao Hamamuki,*Hamilton-Jacobi equations with discontinuous source terms*, Comm. Partial Differential Equations**38**(2013), no. 2, 199–243. MR**3009078**, 10.1080/03605302.2012.739671**21.**Yoshikazu Giga, Qing Liu, and Hiroyoshi Mitake,*Large-time asymptotics for one-dimensional Dirichlet problems for Hamilton-Jacobi equations with noncoercive Hamiltonians*, J. Differential Equations**252**(2012), no. 2, 1263–1282. MR**2853538**, 10.1016/j.jde.2011.10.010**22.**N. Hamamuki,*On large time behavior of Hamilton-Jacobi equations with discontinuous source terms*, preprint.**23.**Dionisios Margetis and Robert V. Kohn,*Continuum relaxation of interacting steps on crystal surfaces in 2+1 dimensions*, Multiscale Model. Simul.**5**(2006), no. 3, 729–758. MR**2257233**, 10.1137/06065297X**24.**Naoyuki Ichihara and Hitoshi Ishii,*Asymptotic solutions of Hamilton-Jacobi equations with semi-periodic Hamiltonians*, Comm. Partial Differential Equations**33**(2008), no. 4-6, 784–807. MR**2424378**, 10.1080/03605300701257427**25.**Naoyuki Ichihara and Hitoshi Ishii,*The large-time behavior of solutions of Hamilton-Jacobi equations on the real line*, Methods Appl. Anal.**15**(2008), no. 2, 223–242. MR**2481681**, 10.4310/MAA.2008.v15.n2.a8**26.**Naoyuki Ichihara and Hitoshi Ishii,*Long-time behavior of solutions of Hamilton-Jacobi equations with convex and coercive Hamiltonians*, Arch. Ration. Mech. Anal.**194**(2009), no. 2, 383–419. MR**2563634**, 10.1007/s00205-008-0170-0**27.**Hitoshi Ishii,*Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations*, Indiana Univ. Math. J.**33**(1984), no. 5, 721–748. MR**756156**, 10.1512/iumj.1984.33.33038**28.**Hitoshi Ishii,*Perron’s method for Hamilton-Jacobi equations*, Duke Math. J.**55**(1987), no. 2, 369–384. MR**894587**, 10.1215/S0012-7094-87-05521-9**29.**Hitoshi Ishii,*A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**16**(1989), no. 1, 105–135. MR**1056130****30.**Hitoshi Ishii,*Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean 𝑛 space*, Ann. Inst. H. Poincaré Anal. Non Linéaire**25**(2008), no. 2, 231–266 (English, with English and French summaries). MR**2396521**, 10.1016/j.anihpc.2006.09.002**31.**Hitoshi Ishii,*Weak KAM aspects of convex Hamilton-Jacobi equations with Neumann type boundary conditions*, J. Math. Pures Appl. (9)**95**(2011), no. 1, 99–135 (English, with English and French summaries). MR**2746439**, 10.1016/j.matpur.2010.10.006**32.**Hitoshi Ishii,*Long-time asymptotic solutions of convex Hamilton-Jacobi equations with Neumann type boundary conditions*, Calc. Var. Partial Differential Equations**42**(2011), no. 1-2, 189–209. MR**2819634**, 10.1007/s00526-010-0385-4**33.**Hitoshi Ishii and Hiroyoshi Mitake,*Representation formulas for solutions of Hamilton-Jacobi equations with convex Hamiltonians*, Indiana Univ. Math. J.**56**(2007), no. 5, 2159–2183. MR**2360607**, 10.1512/iumj.2007.56.3048**34.**J.-M. Lasry and P.-L. Lions,*Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem*, Math. Ann.**283**(1989), no. 4, 583–630. MR**990591**, 10.1007/BF01442856**35.**P.-L. Lions,*Neumann type boundary conditions for Hamilton-Jacobi equations*, Duke Math. J.**52**(1985), no. 4, 793–820. MR**816386**, 10.1215/S0012-7094-85-05242-1**36.**Hiroyoshi Mitake,*Asymptotic solutions of Hamilton-Jacobi equations with state constraints*, Appl. Math. Optim.**58**(2008), no. 3, 393–410. MR**2456853**, 10.1007/s00245-008-9041-1**37.**Hiroyoshi Mitake,*The large-time behavior of solutions of the Cauchy-Dirichlet problem for Hamilton-Jacobi equations*, NoDEA Nonlinear Differential Equations Appl.**15**(2008), no. 3, 347–362. MR**2458643**, 10.1007/s00030-008-7043-y**38.**Hiroyoshi Mitake,*Large time behavior of solutions of Hamilton-Jacobi equations with periodic boundary data*, Nonlinear Anal.**71**(2009), no. 11, 5392–5405. MR**2560209**, 10.1016/j.na.2009.04.028**39.**Gawtum Namah and Jean-Michel Roquejoffre,*Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations*, Comm. Partial Differential Equations**24**(1999), no. 5-6, 883–893. MR**1680905**, 10.1080/03605309908821451**40.**Pavol Quittner and Philippe Souplet,*Superlinear parabolic problems*, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007. Blow-up, global existence and steady states. MR**2346798****41.**Jean-Michel Roquejoffre,*Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations*, J. Math. Pures Appl. (9)**80**(2001), no. 1, 85–104. MR**1810510**, 10.1016/S0021-7824(00)01183-1**42.**Halil Mete Soner,*Optimal control with state-space constraint. I*, SIAM J. Control Optim.**24**(1986), no. 3, 552–561. MR**838056**, 10.1137/0324032**43.**Philippe Souplet and Qi S. Zhang,*Global solutions of inhomogeneous Hamilton-Jacobi equations*, J. Anal. Math.**99**(2006), 355–396. MR**2279557**, 10.1007/BF02789452**44.**Etsuro Yokoyama, Yoshikazu Giga, and Piotr Rybka,*A microscopic time scale approximation to the behavior of the local slope on the faceted surface under a nonuniformity in supersaturation*, Phys. D**237**(2008), no. 22, 2845–2855. MR**2514066**, 10.1016/j.physd.2008.05.009

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
35B40,
35F25,
35F30,
49L25

Retrieve articles in all journals with MSC (2010): 35B40, 35F25, 35F30, 49L25

Additional Information

**Yoshikazu Giga**

Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan — and — Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Email:
labgiga@ms.u-tokyo.ac.jp

**Qing Liu**

Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan

Address at time of publication:
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Email:
qingliu@pitt.edu

**Hiroyoshi Mitake**

Affiliation:
Department of Applied Mathematics, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima-shi 739-8527, Japan

Address at time of publication:
Department of Applied Mathematics, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan

Email:
mitake@math.sci.fukuoka-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9947-2013-05905-3

Keywords:
Large-time behavior,
noncoercive Hamilton-Jacobi equation,
effective domain,
singular Neumann problems,
gradient grow-up,
faceted crystals,
facet instability,
viscosity solution

Received by editor(s):
October 22, 2010

Received by editor(s) in revised form:
June 7, 2012

Published electronically:
September 4, 2013

Additional Notes:
The work of the first author was partly supported by Grant-in-Aid for Scientific Research, No. 21224001 (Kiban S) and No 23244015 (Kiban A), the Japan Society for the Promotion of Science (JSPS)

The work of the second author was partly supported by Research Fellowship for Young Researcher from JSPS, No. 21-7428

The work of the third author was partly supported by Research Fellowship for Young Researcher from JSPS, No. 22-1725

Article copyright:
© Copyright 2013
American Mathematical Society