Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Packing dimension of images of additive Lévy processes


Author: Liang Zhang
Journal: Trans. Amer. Math. Soc. 366 (2014), 2719-2736
MSC (2010): Primary 60G17; Secondary 60G60, 60J45, 28A80
DOI: https://doi.org/10.1090/S0002-9947-2013-05970-3
Published electronically: September 19, 2013
MathSciNet review: 3165653
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we generalize the packing dimension profiles defined by Khoshnevisan, Schilling, and Xiao (2012) to higher dimensions and use it to compute the packing dimension of an arbitrary image of an additive Lévy process.


References [Enhancements On Off] (What's this?)

  • [1] Robert C. Dalang and John B. Walsh, Geography of the level sets of the Brownian sheet, Probab. Theory Related Fields 96 (1993), no. 2, 153-176. MR 1227030 (94h:60055), https://doi.org/10.1007/BF01192131
  • [2] Robert C. Dalang and John B. Walsh, The structure of a Brownian bubble, Probab. Theory Related Fields 96 (1993), no. 4, 475-501. MR 1234620 (94j:60105), https://doi.org/10.1007/BF01200206
  • [3] Kenneth Falconer, Fractal geometry, John Wiley & Sons Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677 (92j:28008)
  • [4] K. J. Falconer and J. D. Howroyd, Packing dimensions of projections and dimension profiles, Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 2, 269-286. MR 1426523 (98j:28004), https://doi.org/10.1017/S0305004196001375
  • [5] P. J. Fitzsimmons and Thomas S. Salisbury, Capacity and energy for multiparameter Markov processes, Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), no. 3, 325-350 (English, with French summary). MR 1023955 (91d:60180)
  • [6] J. D. Howroyd, Box and packing dimensions of projections and dimension profiles, Math. Proc. Cambridge Philos. Soc. 130 (2001), no. 1, 135-160. MR 1797735 (2002a:28010), https://doi.org/10.1017/S0305004100004849
  • [7] W. S. Kendall, Contours of Brownian processes with several-dimensional times, Z. Wahrsch. Verw. Gebiete 52 (1980), no. 3, 267-276. MR 576887 (83a:60066), https://doi.org/10.1007/BF00538891
  • [8] Davar Khoshnevisan, Slices of a Brownian sheet: new results and open problems, Seminar on Stochastic Analysis, Random Fields and Applications V, Progr. Probab., vol. 59, Birkhäuser, Basel, 2008, pp. 135-174. MR 2401955 (2009m:60182), https://doi.org/10.1007/978-3-7643-8458-6_9
  • [9] Davar Khoshnevisan, René Schilling, and Yimin Xiao, Packing dimension profiles and Lévy processes, Bull. London Math. Soc. (2012).
  • [10] Davar Khoshnevisan and Yimin Xiao, Level sets of additive Lévy processes, Ann. Probab. 30 (2002), no. 1, 62-100. MR 1894101 (2002m:60094), https://doi.org/10.1214/aop/1020107761
  • [11] Davar Khoshnevisan and Yimin Xiao, Lévy processes: capacity and Hausdorff dimension, Ann. Probab. 33 (2005), no. 3, 841-878. MR 2135306 (2006d:60078), https://doi.org/10.1214/009117904000001026
  • [12] Davar Khoshnevisan and Yimin Xiao, Packing dimension of the range of a Lévy process, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2597-2607. MR 2390532 (2009d:60143), https://doi.org/10.1090/S0002-9939-08-09163-6
  • [13] Davar Khoshnevisan and Yimin Xiao, Packing-dimension profiles and fractional Brownian motion, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 1, 205-213. MR 2431650 (2009j:60086), https://doi.org/10.1017/S0305004108001394
  • [14] Davar Khoshnevisan, Yimin Xiao, and Yuquan Zhong, Measuring the range of an additive Lévy process, Ann. Probab. 31 (2003), no. 2, 1097-1141. MR 1964960 (2004c:60155), https://doi.org/10.1214/aop/1048516547
  • [15] S. James Taylor, The use of packing measure in the analysis of random sets, Stochastic processes and their applications (Nagoya, 1985) Lecture Notes in Math., vol. 1203, Springer, Berlin, 1986, pp. 214-222. MR 872112 (88i:60078), https://doi.org/10.1007/BFb0076883
  • [16] Ming Yang, Hausdorff dimension of the image of iterated additive processes, Rocky Mountain J. Math. 40 (2010), no. 4, 1333-1353. MR 2718817 (2012a:60143), https://doi.org/10.1216/RMJ-2010-40-4-1333

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60G17, 60G60, 60J45, 28A80

Retrieve articles in all journals with MSC (2010): 60G17, 60G60, 60J45, 28A80


Additional Information

Liang Zhang
Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
Address at time of publication: Department of Statistics and Probability, C-409 Wells Hall, Michigan State University, East Lansing, Michigan 48824
Email: lzhang81@stt.msu.edu

DOI: https://doi.org/10.1090/S0002-9947-2013-05970-3
Received by editor(s): June 18, 2012
Received by editor(s) in revised form: September 19, 2012
Published electronically: September 19, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society